Cargando…

Analytic Eigenbranches in the Semi-classical Limit

We consider a one parameter family of Laplacians on a closed manifold and study the semi-classical limit of its analytically parametrized eigenvalues. Our results establish a vector valued analogue of a theorem for scalar Schrödinger operators on Euclidean space by Luc Hillairet which applies to geo...

Descripción completa

Detalles Bibliográficos
Autor principal: Haller, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328107/
https://www.ncbi.nlm.nih.gov/pubmed/32647523
http://dx.doi.org/10.1007/s11785-020-01011-4
Descripción
Sumario:We consider a one parameter family of Laplacians on a closed manifold and study the semi-classical limit of its analytically parametrized eigenvalues. Our results establish a vector valued analogue of a theorem for scalar Schrödinger operators on Euclidean space by Luc Hillairet which applies to geometric operators like Witten’s Laplacian on differential forms.