Cargando…
Analytic Eigenbranches in the Semi-classical Limit
We consider a one parameter family of Laplacians on a closed manifold and study the semi-classical limit of its analytically parametrized eigenvalues. Our results establish a vector valued analogue of a theorem for scalar Schrödinger operators on Euclidean space by Luc Hillairet which applies to geo...
Autor principal: | Haller, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328107/ https://www.ncbi.nlm.nih.gov/pubmed/32647523 http://dx.doi.org/10.1007/s11785-020-01011-4 |
Ejemplares similares
-
Spectral asymptotics in the semi-classical limit
por: Dimassi, M, et al.
Publicado: (1999) -
V. Glaser's results on the wave function at the origin and the semi-classical limit
por: Martin, A
Publicado: (1986) -
Classical, Semi-classical and Quantum Noise
por: Cohen, Leon, et al.
Publicado: (2012) -
Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions
por: Arnold, Anton, et al.
Publicado: (2017) -
The semi-classical birth of the Universe
por: Hawking, Stephen William, et al.
Publicado: (2006)