Cargando…

MicroRNA-377 Alleviates Myocardial Injury Induced by Hypoxia/Reoxygenation via Downregulating LILRB2 Expression

BACKGROUND: miR-377 is closely related to myocardial regeneration. miR-377-adjusted mesenchymal stem cells abducted ischemic cardiac angiogenesis. Nevertheless, there were rarely reports about the impact of miR-377 on myocardial ischemia injury. The purpose of this work is that whether miR-377 can p...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Mengwei, Hu, Chunlan, Li, Delin, Li, Shifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328223/
https://www.ncbi.nlm.nih.gov/pubmed/32647500
http://dx.doi.org/10.1177/1559325820936124
Descripción
Sumario:BACKGROUND: miR-377 is closely related to myocardial regeneration. miR-377-adjusted mesenchymal stem cells abducted ischemic cardiac angiogenesis. Nevertheless, there were rarely reports about the impact of miR-377 on myocardial ischemia injury. The purpose of this work is that whether miR-377 can protect against myocardial injury caused by hypoxia/reoxygenation (H/R). METHODS: Gene expression omnibus database (http://www.ncbi.nlm.nih.gov/geo/; no. GSE53211) was utilized to study the differential expression of miR-377 in patients with an acute ST-segment elevation myocardial infarction and healthy controls. The luciferase activity was determined utilizing the dual-luciferase reporter system. Quantitative real-time polymerase chain reaction and Western blotting were used to measure the messenger RNA and protein level. RESULTS: Low expression of miR-377 and high expression of leukocyte immunoglobulin-like receptor B2 (LILRB2) were identified in patients with myocardial infarction from analyzing the Gene Expression Omnibus data set. Besides, miR-377 expression was downregulated in cardiomyocyte exposed to H/R. Additionally, overexpression of miR-377 could visibly improve cardiomyocyte injury by regulating cell activity and apoptosis. CONCLUSIONS: In short, our findings suggested that miR-377/LILRB2 might regard as a hopeful therapeutic target for myocardial ischemic.