Cargando…
An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole reliance on experimental design, make, and test cycles is costly and time consuming, providing an opportunity for computational methods to assist. Herein, we present results comparing random forest and feed-for...
Autores principales: | Parks, Conor, Gaieb, Zied, Amaro, Rommie E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328444/ https://www.ncbi.nlm.nih.gov/pubmed/32671093 http://dx.doi.org/10.3389/fmolb.2020.00093 |
Ejemplares similares
-
Big Data analytics for improved prediction of ligand binding and conformational selection
por: Gupta, Shivangi, et al.
Publicado: (2023) -
Learned features of antibody-antigen binding affinity
por: Miller, Nathaniel L., et al.
Publicado: (2023) -
Enhancing response of a protein conformational switch by using two disordered ligand binding domains
por: Sekhon, Harsimranjit, et al.
Publicado: (2023) -
Editorial: Mechanisms, thermodynamics and kinetics of ligand binding revealed from molecular simulations and machine learning
por: Miao, Yinglong, et al.
Publicado: (2023) -
RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified Physicochemical Features
por: Holderbach, Stefan, et al.
Publicado: (2020)