Cargando…
Sedimentary organic matter from a cored Early Triassic succession, Georgetown (Idaho, USA)
The plant fossil record from Lower Triassic sedimentary successions of the Western USA is extremely meager. In this study, samples from a drill core taken near Georgetown, Idaho, were analyzed for their palynological content as well as their stable carbon isotope composition. The concentration of pa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328446/ https://www.ncbi.nlm.nih.gov/pubmed/32647528 http://dx.doi.org/10.1186/s13358-020-00205-9 |
Sumario: | The plant fossil record from Lower Triassic sedimentary successions of the Western USA is extremely meager. In this study, samples from a drill core taken near Georgetown, Idaho, were analyzed for their palynological content as well as their stable carbon isotope composition. The concentration of palynomorphs is generally low. The lowermost part of the drilled succession represents Dinwoody/Woodside Formation and contains spore and pollen assemblages with Permian and Early Triassic affinity. Representatives of lycophytes (Densoisporites spp., Lundbladisporites spp.) were found in the overlying Meekoceras Limestone, in agreement with middle Smithian assemblages elsewhere. Ammonoids and conodonts are extremely rare, but confirm a middle Smithian age. Bulk organic and carbonate carbon isotope composition provide a stratigraphic framework. Carbonate carbon isotope compositions are compatible with the Smithian–Spathian global trend, with a middle Smithian shift towards lower δ(13)C values followed by a late Smithian shift towards higher values. Bulk organic carbon isotope compositions have been influenced by changes in the constitution of organic matter. A comparison with other paired carbon isotope datasets from the same basin is difficult due to lithostratigraphic inconsistencies (Hot Springs, ID) or biochemical mediated disturbance of isotope signals (Mineral Mountains, UT). |
---|