Cargando…
GinJinn: An object‐detection pipeline for automated feature extraction from herbarium specimens
PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor‐intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and ob...
Autores principales: | Ott, Tankred, Palm, Christoph, Vogt, Robert, Oberprieler, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328649/ https://www.ncbi.nlm.nih.gov/pubmed/32626606 http://dx.doi.org/10.1002/aps3.11351 |
Ejemplares similares
-
Long‐read genotyping with SLANG (Simple Long‐read loci Assembly of Nanopore data for Genotyping)
por: Dorfner, Marco, et al.
Publicado: (2022) -
LeafMachine: Using machine learning to automate leaf trait extraction from digitized herbarium specimens
por: Weaver, William N., et al.
Publicado: (2020) -
Picks in the Fabric of a Polyploidy Complex: Integrative Species Delimitation in the Tetraploid Leucanthemum Mill. (Compositae, Anthemideae) Representatives
por: Oberprieler, Christoph, et al.
Publicado: (2023) -
The Warps and Wefts of a Polyploidy Complex: Integrative Species Delimitation of the Diploid Leucanthemum (Compositae, Anthemideae) Representatives
por: Ott, Tankred, et al.
Publicado: (2022) -
Going deeper in the automated identification of Herbarium specimens
por: Carranza-Rojas, Jose, et al.
Publicado: (2017)