Cargando…
LeafMachine: Using machine learning to automate leaf trait extraction from digitized herbarium specimens
PREMISE: Obtaining phenotypic data from herbarium specimens can provide important insights into plant evolution and ecology but requires significant manual effort and time. Here, we present LeafMachine, an application designed to autonomously measure leaves from digitized herbarium specimens or leaf...
Autores principales: | Weaver, William N., Ng, Julienne, Laport, Robert G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328653/ https://www.ncbi.nlm.nih.gov/pubmed/32626609 http://dx.doi.org/10.1002/aps3.11367 |
Ejemplares similares
-
From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis with LeafMachine2
por: Weaver, William N., et al.
Publicado: (2023) -
GinJinn: An object‐detection pipeline for automated feature extraction from herbarium specimens
por: Ott, Tankred, et al.
Publicado: (2020) -
Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation
por: Hussein, Burhan Rashid, et al.
Publicado: (2021) -
Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area(1)
por: Easlon, Hsien Ming, et al.
Publicado: (2014) -
Multiple Leaf Sample Extraction System (MuLES): A tool to improve automated morphometric leaf studies
por: Bowman, Christian S., et al.
Publicado: (2023)