Cargando…
An algorithm competition for automatic species identification from herbarium specimens
PREMISE: Plant biodiversity is threatened, yet many species remain undescribed. It is estimated that >50% of undescribed species have already been collected and are awaiting discovery in herbaria. Robust automatic species identification algorithms using machine learning could accelerate species d...
Autores principales: | Little, Damon P., Tulig, Melissa, Tan, Kiat Chuan, Liu, Yulong, Belongie, Serge, Kaeser‐Chen, Christine, Michelangeli, Fabián A., Panesar, Kiran, Guha, R.V., Ambrose, Barbara A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328655/ https://www.ncbi.nlm.nih.gov/pubmed/32626608 http://dx.doi.org/10.1002/aps3.11365 |
Ejemplares similares
-
The Herbarium 2021 Half–Earth Challenge Dataset and Machine Learning Competition
por: de Lutio, Riccardo, et al.
Publicado: (2022) -
Increasing the efficiency of digitization workflows for herbarium specimens
por: Tulig, Melissa, et al.
Publicado: (2012) -
Continental‐scale metagenomics, BLAST searches, and herbarium specimens: The Australian Microbiome Initiative and the National Herbarium of Victoria
por: Davoodian, Naveed, et al.
Publicado: (2020) -
Utilizing herbarium specimens to quantify historical mycorrhizal communities
por: Heberling, J. Mason, et al.
Publicado: (2019) -
Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research
por: Panchen, Zoe A., et al.
Publicado: (2019)