Cargando…
Generating segmentation masks of herbarium specimens and a data set for training segmentation models using deep learning
PREMISE: Digitized images of herbarium specimens are highly diverse with many potential sources of visual noise and bias. The systematic removal of noise and minimization of bias must be achieved in order to generate biological insights based on the plants rather than the digitization and mounting p...
Autores principales: | White, Alexander E., Dikow, Rebecca B., Baugh, Makinnon, Jenkins, Abigail, Frandsen, Paul B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328659/ https://www.ncbi.nlm.nih.gov/pubmed/32626607 http://dx.doi.org/10.1002/aps3.11352 |
Ejemplares similares
-
Continental‐scale metagenomics, BLAST searches, and herbarium specimens: The Australian Microbiome Initiative and the National Herbarium of Victoria
por: Davoodian, Naveed, et al.
Publicado: (2020) -
Utilizing herbarium specimens to quantify historical mycorrhizal communities
por: Heberling, J. Mason, et al.
Publicado: (2019) -
Next-generation sampling: Pairing genomics with herbarium specimens provides species-level signal in Solidago (Asteraceae)(1)
por: Beck, James B., et al.
Publicado: (2015) -
An algorithm competition for automatic species identification from herbarium specimens
por: Little, Damon P., et al.
Publicado: (2020) -
Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research
por: Panchen, Zoe A., et al.
Publicado: (2019)