Cargando…
Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application
AIM: To study the influence of time and volume of 2% sodium hypochlorite (NaOCl) on biofilm removal and to investigate the changes induced on the biofilm architecture. Steady‐state, dual‐species biofilms of standardized thickness and a realistic contact surface area between biofilms and NaOCl were u...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328852/ https://www.ncbi.nlm.nih.gov/pubmed/30807649 http://dx.doi.org/10.1111/iej.13102 |
_version_ | 1783552804838703104 |
---|---|
author | Petridis, X. Busanello, F. H. So, M. V. R. Dijkstra, R. J. B. Sharma, P. K. van der Sluis, L. W. M. |
author_facet | Petridis, X. Busanello, F. H. So, M. V. R. Dijkstra, R. J. B. Sharma, P. K. van der Sluis, L. W. M. |
author_sort | Petridis, X. |
collection | PubMed |
description | AIM: To study the influence of time and volume of 2% sodium hypochlorite (NaOCl) on biofilm removal and to investigate the changes induced on the biofilm architecture. Steady‐state, dual‐species biofilms of standardized thickness and a realistic contact surface area between biofilms and NaOCl were used. METHODOLOGY: Streptococcus oralis J22 and Actinomyces naeslundii T14V‐J1 biofilms were grown on saliva‐coated hydroxyapatite discs within sample holders in the Constant Depth Film Fermenter (CDFF) for 96 h. Two per cent NaOCl was statically applied for three different time intervals (60, 120 and 300 s) and in two different volumes (20 and 40 μL) over the biofilm samples. The diffusion‐driven effects of time and volume on biofilm disruption and dissolution were assessed with Optical Coherence Tomography (OCT). Structural changes of the biofilms treated with 2% NaOCl were studied with Confocal Laser Scanning Microscopy (CLSM) and Low Load Compression Testing (LLCT). A two‐way analysis of variance (2‐way anova) was performed, enabling the effect of each independent variable as well as their interaction on the outcome measures. RESULTS: Optical coherence tomography revealed that by increasing the exposure time and volume of 2% NaOCl, both biofilm disruption and dissolution significantly increased. Analysis of the interaction between the two independent variables revealed that by increasing the volume of 2% NaOCl, significant biofilm dissolution could be achieved in less time. Examination of the architecture of the remaining biofilms corroborated the EPS‐lytic action of 2% NaOCl, especially when greater volumes were applied. The viscoelastic analysis of the 2% NaOCl‐treated biofilms revealed that the preceding application of higher volumes could impact their subsequent removal. CONCLUSIONS: Time and volume of 2% NaOCl application should be taken into account for maximizing the anti‐biofilm efficiency of the irrigant and devising targeted disinfecting regimes against remaining biofilms. |
format | Online Article Text |
id | pubmed-7328852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73288522020-07-02 Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application Petridis, X. Busanello, F. H. So, M. V. R. Dijkstra, R. J. B. Sharma, P. K. van der Sluis, L. W. M. Int Endod J Basic Research – Technical AIM: To study the influence of time and volume of 2% sodium hypochlorite (NaOCl) on biofilm removal and to investigate the changes induced on the biofilm architecture. Steady‐state, dual‐species biofilms of standardized thickness and a realistic contact surface area between biofilms and NaOCl were used. METHODOLOGY: Streptococcus oralis J22 and Actinomyces naeslundii T14V‐J1 biofilms were grown on saliva‐coated hydroxyapatite discs within sample holders in the Constant Depth Film Fermenter (CDFF) for 96 h. Two per cent NaOCl was statically applied for three different time intervals (60, 120 and 300 s) and in two different volumes (20 and 40 μL) over the biofilm samples. The diffusion‐driven effects of time and volume on biofilm disruption and dissolution were assessed with Optical Coherence Tomography (OCT). Structural changes of the biofilms treated with 2% NaOCl were studied with Confocal Laser Scanning Microscopy (CLSM) and Low Load Compression Testing (LLCT). A two‐way analysis of variance (2‐way anova) was performed, enabling the effect of each independent variable as well as their interaction on the outcome measures. RESULTS: Optical coherence tomography revealed that by increasing the exposure time and volume of 2% NaOCl, both biofilm disruption and dissolution significantly increased. Analysis of the interaction between the two independent variables revealed that by increasing the volume of 2% NaOCl, significant biofilm dissolution could be achieved in less time. Examination of the architecture of the remaining biofilms corroborated the EPS‐lytic action of 2% NaOCl, especially when greater volumes were applied. The viscoelastic analysis of the 2% NaOCl‐treated biofilms revealed that the preceding application of higher volumes could impact their subsequent removal. CONCLUSIONS: Time and volume of 2% NaOCl application should be taken into account for maximizing the anti‐biofilm efficiency of the irrigant and devising targeted disinfecting regimes against remaining biofilms. John Wiley and Sons Inc. 2019-03-13 2019-08 /pmc/articles/PMC7328852/ /pubmed/30807649 http://dx.doi.org/10.1111/iej.13102 Text en © 2019 The Authors. International Endodontic Journal published by John Wiley & Sons Ltd on behalf of British Endodontic Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Basic Research – Technical Petridis, X. Busanello, F. H. So, M. V. R. Dijkstra, R. J. B. Sharma, P. K. van der Sluis, L. W. M. Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title | Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title_full | Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title_fullStr | Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title_full_unstemmed | Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title_short | Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: Exposure time and volume application |
title_sort | factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady‐state dual‐species biofilms: exposure time and volume application |
topic | Basic Research – Technical |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328852/ https://www.ncbi.nlm.nih.gov/pubmed/30807649 http://dx.doi.org/10.1111/iej.13102 |
work_keys_str_mv | AT petridisx factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication AT busanellofh factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication AT somvr factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication AT dijkstrarjb factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication AT sharmapk factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication AT vandersluislwm factorsaffectingthechemicalefficacyof2sodiumhypochloriteagainstoralsteadystatedualspeciesbiofilmsexposuretimeandvolumeapplication |