Cargando…
A simple model for learning in volatile environments
Sound principles of statistical inference dictate that uncertainty shapes learning. In this work, we revisit the question of learning in volatile environments, in which both the first and second-order statistics of observations dynamically evolve over time. We propose a new model, the volatile Kalma...
Autores principales: | Piray, Payam, Daw, Nathaniel D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329063/ https://www.ncbi.nlm.nih.gov/pubmed/32609755 http://dx.doi.org/10.1371/journal.pcbi.1007963 |
Ejemplares similares
-
A model for learning based on the joint estimation of stochasticity and volatility
por: Piray, Payam, et al.
Publicado: (2021) -
Linear reinforcement learning in planning, grid fields, and cognitive control
por: Piray, Payam, et al.
Publicado: (2021) -
Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies
por: Piray, Payam, et al.
Publicado: (2019) -
Suboptimal Criterion Learning in Static and Dynamic Environments
por: Norton, Elyse H., et al.
Publicado: (2017) -
Speed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes
por: Keramati, Mehdi, et al.
Publicado: (2011)