Cargando…

Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting

BACKGROUND: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles...

Descripción completa

Detalles Bibliográficos
Autores principales: Escobar, Denis, Ascencio, Krisnaya, Ortiz, Andrés, Palma, Adalid, Fontecha, Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329488/
https://www.ncbi.nlm.nih.gov/pubmed/32611432
http://dx.doi.org/10.1186/s13071-020-04203-1
_version_ 1783552915451936768
author Escobar, Denis
Ascencio, Krisnaya
Ortiz, Andrés
Palma, Adalid
Fontecha, Gustavo
author_facet Escobar, Denis
Ascencio, Krisnaya
Ortiz, Andrés
Palma, Adalid
Fontecha, Gustavo
author_sort Escobar, Denis
collection PubMed
description BACKGROUND: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. METHODS: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. Morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome c oxidase 1 gene (cox1) and the ribosomal internal transcribed spacer 2 (ITS2). RESULTS: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for cox1 and ITS2, respectively. Both markers confirmed the morphological identification. cox1 showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis and An. neivai are reported in this study. CONCLUSIONS: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras. [Image: see text]
format Online
Article
Text
id pubmed-7329488
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-73294882020-07-02 Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting Escobar, Denis Ascencio, Krisnaya Ortiz, Andrés Palma, Adalid Fontecha, Gustavo Parasit Vectors Research BACKGROUND: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. METHODS: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. Morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome c oxidase 1 gene (cox1) and the ribosomal internal transcribed spacer 2 (ITS2). RESULTS: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for cox1 and ITS2, respectively. Both markers confirmed the morphological identification. cox1 showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis and An. neivai are reported in this study. CONCLUSIONS: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras. [Image: see text] BioMed Central 2020-07-01 /pmc/articles/PMC7329488/ /pubmed/32611432 http://dx.doi.org/10.1186/s13071-020-04203-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Escobar, Denis
Ascencio, Krisnaya
Ortiz, Andrés
Palma, Adalid
Fontecha, Gustavo
Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title_full Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title_fullStr Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title_full_unstemmed Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title_short Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting
title_sort distribution and phylogenetic diversity of anopheles species in malaria endemic areas of honduras in an elimination setting
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329488/
https://www.ncbi.nlm.nih.gov/pubmed/32611432
http://dx.doi.org/10.1186/s13071-020-04203-1
work_keys_str_mv AT escobardenis distributionandphylogeneticdiversityofanophelesspeciesinmalariaendemicareasofhondurasinaneliminationsetting
AT ascenciokrisnaya distributionandphylogeneticdiversityofanophelesspeciesinmalariaendemicareasofhondurasinaneliminationsetting
AT ortizandres distributionandphylogeneticdiversityofanophelesspeciesinmalariaendemicareasofhondurasinaneliminationsetting
AT palmaadalid distributionandphylogeneticdiversityofanophelesspeciesinmalariaendemicareasofhondurasinaneliminationsetting
AT fontechagustavo distributionandphylogeneticdiversityofanophelesspeciesinmalariaendemicareasofhondurasinaneliminationsetting