Cargando…

Postpartum meloxicam administration alters plasma haptoglobin, polyunsaturated fatty acid, and oxylipid concentrations in postpartum ewes

BACKGROUND: Postpartum inflammation is a natural and necessary response; however, a dysfunctional inflammatory response can be detrimental to animal productivity. The objective of this study was to determine the effects of a non-steroidal anti-inflammatory drug (meloxicam) on ewe postpartum inflamma...

Descripción completa

Detalles Bibliográficos
Autores principales: Olagaray, Katie E., Bradford, Barry J., Sordillo, Lorraine M., Gandy, Jeffery C., Mamedova, Laman K., Swartz, Turner H., Jackson, Trey D., Persoon, Emma K., Shugart, Caitlin S., Youngs, Curtis R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329520/
https://www.ncbi.nlm.nih.gov/pubmed/32626575
http://dx.doi.org/10.1186/s40104-020-00473-y
Descripción
Sumario:BACKGROUND: Postpartum inflammation is a natural and necessary response; however, a dysfunctional inflammatory response can be detrimental to animal productivity. The objective of this study was to determine the effects of a non-steroidal anti-inflammatory drug (meloxicam) on ewe postpartum inflammatory response, ewe plasma polyunsaturated fatty acid and oxylipid concentrations, and lamb growth. RESULTS: After lambing, 36 Hampshire and Hampshire × Suffolk ewes were sequentially assigned within type of birth to control (n = 17) or meloxicam orally administered on d 1 and 4 of lactation (MEL; 90 mg, n = 19). Milk and blood samples were collected on d 1 (prior to treatment) and d 4. Milk glucose-6-phosphate was not affected by MEL. Plasma haptoglobin (Hp) concentrations were less for MEL ewes; control ewes with greater d 1 Hp concentrations had elevated Hp on d 4, but this was not the case for MEL-treated ewes. Treatment with MEL increased plasma arachidonic acid concentration by more than 4-fold in ewes rearing singles but decreased concentrations of 9,10-dihydroxyoctadecenoic acid, prostaglandin F(2α), 8-iso-prostaglandin E(2), and 8,9-dihydroxyeicosatetraenoic acid. Nine oxylipids in plasma had interactions of treatment with d 1 Hp concentration, all of which revealed positive associations between d 1 Hp and d 4 oxylipid concentrations for CON, but neutral or negative relationships for MEL. MEL decreased 13-hydroxyoctadecadienoic acid:13-oxooctadecadienoic acid ratio and tended to increase 9-hydroxyoctadecadienoic acid:9-oxooctadecadienoic acid ratio (both dependent on d 1 values), indicating progressive metabolism of linoleic acid-derived oxylipids occurred by enzymatic oxidation after MEL treatment. Meloxicam reduced oxylipids generated across oxygenation pathways, potentially due to an improved redox state. CONCLUSIONS: Postpartum MEL treatment of ewes decreased plasma concentrations of Hp and several oxylipids, with the greatest impact in ewes with biomarkers reflecting a greater inflammatory state before treatment. Anti-inflammatory strategies may help resolve excessive postpartum inflammation in some dams.