Cargando…
Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes
Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many...
Autores principales: | Kloenne, Marie, Niehaus, Sebastian, Lampe, Leonie, Merola, Alberto, Reinelt, Janis, Roeder, Ingo, Scherf, Nico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329868/ https://www.ncbi.nlm.nih.gov/pubmed/32612129 http://dx.doi.org/10.1038/s41598-020-67544-y |
Ejemplares similares
-
How to predict relapse in leukemia using time series data: A comparative in silico study
por: Hoffmann, Helene, et al.
Publicado: (2021) -
Segmentation Cues in Conversational Speech: Robust Semantics and Fragile Phonotactics
por: White, Laurence, et al.
Publicado: (2012) -
A Standardized Clinical Data Harmonization Pipeline for Scalable AI Application Deployment (FHIR-DHP): Validation and Usability Study
por: Williams, Elena, et al.
Publicado: (2023) -
DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization
por: Baniasadi, Mehri, et al.
Publicado: (2022) -
Lung Segmentation in 4D CT Volumes Based on Robust Active Shape Model Matching
por: Gill, Gurman, et al.
Publicado: (2015)