Cargando…

Electroacupuncture at Zusanli and at Neiguan characterized point specificity in the brain by metabolomic analysis

Different point stimulations can induce brain activity in specific regions, and however whether these stimulations affect unique neurotransmitter transmission remains unknown. Therefore, we aimed to investigate the effect of point specificity to the brain by resolving the metabolite profiles. Eighte...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Der-Yen, Jiu, Yu-Rung, Hsieh, Ching-Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329888/
https://www.ncbi.nlm.nih.gov/pubmed/32612281
http://dx.doi.org/10.1038/s41598-020-67766-0
Descripción
Sumario:Different point stimulations can induce brain activity in specific regions, and however whether these stimulations affect unique neurotransmitter transmission remains unknown. Therefore, we aimed to investigate the effect of point specificity to the brain by resolving the metabolite profiles. Eighteen Sprague–Dawley rats were randomly divided into three groups: (1) the sham group: sham acupuncture at Zusanli (ST36) without electric stimulation; (2) the Zusanli (ST36) group: electroacupuncture (EA) at ST36; and (3) the Neiguan (PC6) group: EA at PC6. Then, the metabolites from rat brain samples were measured by LC–ESI–MS. The results of a partial least squares discriminant analysis revealed the differences among the sham, ST36, and PC6 groups regarding the relative content of metabolites in the cerebral cortex, hippocampus, and hypothalamus. EA at PC6 resulted in downregulation of adenosine, adrenaline, γ-aminobutyric acid, glycine, and glutamate majorly in hippocampus, and then in cerebral cortex. Otherwise, EA at ST6 resulted in upregulation of adrenaline and arginine in hippocampus, and all stimulations showed barely change of identified neurotransmitters in hypothalamus. These differential metabolite and neurotransmitter profiles prove that brain areas can be modulated by point specificity and may provide a maneuver to understand more details of meridian.