Cargando…
The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts
Warming in the high Arctic is occurring at the fastest rate on the planet, raising concerns over how this global change driver will influence plant community composition, the timing of vegetation phenological events, and the wildlife that rely on them. In this region, as much as 50% of near-surface...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329987/ https://www.ncbi.nlm.nih.gov/pubmed/32670312 http://dx.doi.org/10.3389/fpls.2020.00759 |
_version_ | 1783553012983136256 |
---|---|
author | Chisholm, Chelsea Becker, Michael S. Pollard, Wayne H. |
author_facet | Chisholm, Chelsea Becker, Michael S. Pollard, Wayne H. |
author_sort | Chisholm, Chelsea |
collection | PubMed |
description | Warming in the high Arctic is occurring at the fastest rate on the planet, raising concerns over how this global change driver will influence plant community composition, the timing of vegetation phenological events, and the wildlife that rely on them. In this region, as much as 50% of near-surface permafrost is composed of thermally sensitive ground ice that when melted produces substantial changes in topography and microbiome conditions. We take advantage of natural variations in permafrost melt to conduct a space-for-time study on Ellesmere Island in northern Canada. We demonstrate that phenological timing can be delayed in thermokarst areas when compared to stable ground, and that this change is a function of shifting species composition in these vegetation communities as well as delayed timing within species. These findings suggest that a warming climate could result in an overall broadening of blooming and leafing windows at the landscape level when these delayed timings are taken into consideration with the projected advance of phenological timings in ice-poor areas. We emphasize that the impacts of geomorphic processes on key phenological drivers are essential for enhancing our understanding of community response to climate warming in the high Arctic, with implications for ecosystem functioning and trophic interactions. |
format | Online Article Text |
id | pubmed-7329987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73299872020-07-14 The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts Chisholm, Chelsea Becker, Michael S. Pollard, Wayne H. Front Plant Sci Plant Science Warming in the high Arctic is occurring at the fastest rate on the planet, raising concerns over how this global change driver will influence plant community composition, the timing of vegetation phenological events, and the wildlife that rely on them. In this region, as much as 50% of near-surface permafrost is composed of thermally sensitive ground ice that when melted produces substantial changes in topography and microbiome conditions. We take advantage of natural variations in permafrost melt to conduct a space-for-time study on Ellesmere Island in northern Canada. We demonstrate that phenological timing can be delayed in thermokarst areas when compared to stable ground, and that this change is a function of shifting species composition in these vegetation communities as well as delayed timing within species. These findings suggest that a warming climate could result in an overall broadening of blooming and leafing windows at the landscape level when these delayed timings are taken into consideration with the projected advance of phenological timings in ice-poor areas. We emphasize that the impacts of geomorphic processes on key phenological drivers are essential for enhancing our understanding of community response to climate warming in the high Arctic, with implications for ecosystem functioning and trophic interactions. Frontiers Media S.A. 2020-06-25 /pmc/articles/PMC7329987/ /pubmed/32670312 http://dx.doi.org/10.3389/fpls.2020.00759 Text en Copyright © 2020 Chisholm, Becker and Pollard. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chisholm, Chelsea Becker, Michael S. Pollard, Wayne H. The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title | The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title_full | The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title_fullStr | The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title_full_unstemmed | The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title_short | The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts |
title_sort | importance of incorporating landscape change for predictions of climate-induced plant phenological shifts |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329987/ https://www.ncbi.nlm.nih.gov/pubmed/32670312 http://dx.doi.org/10.3389/fpls.2020.00759 |
work_keys_str_mv | AT chisholmchelsea theimportanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts AT beckermichaels theimportanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts AT pollardwayneh theimportanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts AT chisholmchelsea importanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts AT beckermichaels importanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts AT pollardwayneh importanceofincorporatinglandscapechangeforpredictionsofclimateinducedplantphenologicalshifts |