Cargando…
A novel approach to Fabry–Pérot-resonance-based lens and demonstrating deep-subwavelength imaging
During our research, we explored a novel way to represent subwavelength imaging and derived a transmission equation to explicate the FP (Fabry–Pérot) resonance phenomena. Subsequently, using analysis and observation, we performed deep-subwavelength imaging. Both numerically and experimentally, imagi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330042/ https://www.ncbi.nlm.nih.gov/pubmed/32612240 http://dx.doi.org/10.1038/s41598-020-67409-4 |
Sumario: | During our research, we explored a novel way to represent subwavelength imaging and derived a transmission equation to explicate the FP (Fabry–Pérot) resonance phenomena. Subsequently, using analysis and observation, we performed deep-subwavelength imaging. Both numerically and experimentally, imaging with super-resolution was achieved at deep subwavelength scale of λ/56.53 with a lens thickness 212 mm. Our results also showed that by increasing lens thickness, higher resolution can be achieved. Moreover, via a single source study, we showed the full width at half maximum range and predicted the size of smallest detectable object. We also observed that with a greater lens thickness, finer features could be detected. These findings may open a new route in near-field imaging for practical applications such as biometric sensors, ultrasonic medical equipment, and non-destructive testing. |
---|