Cargando…

Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes

Objectives: The occurrence of hepatocellular carcinoma (HCC) is a complex process involving genetic mutations, epigenetic variation, and abnormal gene expression. However, a comprehensive multiomics investigation of HCC is lacking, and the available multiomics evidence has not led to improvements in...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ziyu, Lin, Yan, Gao, Xing, Mai, Rongyun, Piao, Xuemin, Ye, Jiazhou, Liang, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330124/
https://www.ncbi.nlm.nih.gov/pubmed/32670354
http://dx.doi.org/10.3389/fgene.2020.00634
_version_ 1783553047149936640
author Liu, Ziyu
Lin, Yan
Gao, Xing
Mai, Rongyun
Piao, Xuemin
Ye, Jiazhou
Liang, Rong
author_facet Liu, Ziyu
Lin, Yan
Gao, Xing
Mai, Rongyun
Piao, Xuemin
Ye, Jiazhou
Liang, Rong
author_sort Liu, Ziyu
collection PubMed
description Objectives: The occurrence of hepatocellular carcinoma (HCC) is a complex process involving genetic mutations, epigenetic variation, and abnormal gene expression. However, a comprehensive multiomics investigation of HCC is lacking, and the available multiomics evidence has not led to improvements in clinical practice. Therefore, we explored the molecular mechanism underlying the development of HCC through an integrative analysis of multiomics data obtained at multiple levels to provide innovative perspectives and a new theoretical basis for the early diagnosis, personalized treatment and medical guidance of HCC. Methods: In this study, we collected whole-exome sequencing data, RNA (mRNA and miRNA) sequencing data, DNA methylation array data, and single nucleotide polymorphism (SNP) array data from The Cancer Genome Atlas (TCGA). We analyzed the copy number variation (CNV) in HCC using GISTIC2. MutSigCV was applied to identify significantly mutated genes (SMGs). Functional enrichment analyses were performed using the clusterProfiler package in R software. The prognostic values of discrete variables were estimated using Kaplan–Meier survival curves. Results: By analyzing the HCC data in TCGA, we constructed a comprehensive multiomics map of HCC. Through copy number analysis, we identified significant amplification at 29 loci and significant deletions at 33 loci. A total of 13 significant mutant genes were identified. In addition, we also identified three HCC-related mutant signatures, and among these, signature 22 was closely related to exposure to aristolochic acids. Subsequently, we analyzed the methylation level of HCC samples and identified 51 epigenetically silenced genes that were significantly associated with methylation. The differential expression analysis identified differentially expressed mRNAs and miRNAs in HCC samples. Based on the above-described results, we identified a total of 93 possible HCC driver genes, which are driven by mutations, methylation, and CNVs and have prognostic value. Conclusion: Our study reveals variations in different dimensions of HCC. We performed an integrative analysis of genomic signatures, single nucleotide variants (SNVs), CNVs, methylation, and gene expression in HCC. Based on the results, we identified HCC possible driver genes that might facilitate prognostic prediction and support decision making with regard to the choice of therapy.
format Online
Article
Text
id pubmed-7330124
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-73301242020-07-14 Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes Liu, Ziyu Lin, Yan Gao, Xing Mai, Rongyun Piao, Xuemin Ye, Jiazhou Liang, Rong Front Genet Genetics Objectives: The occurrence of hepatocellular carcinoma (HCC) is a complex process involving genetic mutations, epigenetic variation, and abnormal gene expression. However, a comprehensive multiomics investigation of HCC is lacking, and the available multiomics evidence has not led to improvements in clinical practice. Therefore, we explored the molecular mechanism underlying the development of HCC through an integrative analysis of multiomics data obtained at multiple levels to provide innovative perspectives and a new theoretical basis for the early diagnosis, personalized treatment and medical guidance of HCC. Methods: In this study, we collected whole-exome sequencing data, RNA (mRNA and miRNA) sequencing data, DNA methylation array data, and single nucleotide polymorphism (SNP) array data from The Cancer Genome Atlas (TCGA). We analyzed the copy number variation (CNV) in HCC using GISTIC2. MutSigCV was applied to identify significantly mutated genes (SMGs). Functional enrichment analyses were performed using the clusterProfiler package in R software. The prognostic values of discrete variables were estimated using Kaplan–Meier survival curves. Results: By analyzing the HCC data in TCGA, we constructed a comprehensive multiomics map of HCC. Through copy number analysis, we identified significant amplification at 29 loci and significant deletions at 33 loci. A total of 13 significant mutant genes were identified. In addition, we also identified three HCC-related mutant signatures, and among these, signature 22 was closely related to exposure to aristolochic acids. Subsequently, we analyzed the methylation level of HCC samples and identified 51 epigenetically silenced genes that were significantly associated with methylation. The differential expression analysis identified differentially expressed mRNAs and miRNAs in HCC samples. Based on the above-described results, we identified a total of 93 possible HCC driver genes, which are driven by mutations, methylation, and CNVs and have prognostic value. Conclusion: Our study reveals variations in different dimensions of HCC. We performed an integrative analysis of genomic signatures, single nucleotide variants (SNVs), CNVs, methylation, and gene expression in HCC. Based on the results, we identified HCC possible driver genes that might facilitate prognostic prediction and support decision making with regard to the choice of therapy. Frontiers Media S.A. 2020-06-25 /pmc/articles/PMC7330124/ /pubmed/32670354 http://dx.doi.org/10.3389/fgene.2020.00634 Text en Copyright © 2020 Liu, Lin, Gao, Mai, Piao, Ye and Liang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Liu, Ziyu
Lin, Yan
Gao, Xing
Mai, Rongyun
Piao, Xuemin
Ye, Jiazhou
Liang, Rong
Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title_full Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title_fullStr Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title_full_unstemmed Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title_short Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes
title_sort construction of a comprehensive multiomics map of hepatocellular carcinoma and screening of possible driver genes
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330124/
https://www.ncbi.nlm.nih.gov/pubmed/32670354
http://dx.doi.org/10.3389/fgene.2020.00634
work_keys_str_mv AT liuziyu constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT linyan constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT gaoxing constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT mairongyun constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT piaoxuemin constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT yejiazhou constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes
AT liangrong constructionofacomprehensivemultiomicsmapofhepatocellularcarcinomaandscreeningofpossibledrivergenes