Cargando…
Modified-Distribution Entropy as the Features for the Detection of Epileptic Seizures
Epilepsy is one of the most common chronic neurological disorders, and therefore, diagnosis and treatment methods are urgently needed for these patients. Many methods and algorithms that can detect seizures in epileptic patients have been proposed. Electroencephalogram (EEG) is one of helpful tools...
Autores principales: | Aung, Si Thu, Wongsawat, Yodchanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330138/ https://www.ncbi.nlm.nih.gov/pubmed/32670082 http://dx.doi.org/10.3389/fphys.2020.00607 |
Ejemplares similares
-
Prediction of epileptic seizures based on multivariate multiscale modified-distribution entropy
por: Aung, Si Thu, et al.
Publicado: (2021) -
Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy
por: Li, Peng, et al.
Publicado: (2016) -
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
por: Aung, Si Thu, et al.
Publicado: (2022) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023) -
Epileptic Seizure Prediction Based on Permutation Entropy
por: Yang, Yanli, et al.
Publicado: (2018)