Cargando…
Gaussian bandwidth selection for manifold learning and classification
Kernel methods play a critical role in many machine learning algorithms. They are useful in manifold learning, classification, clustering and other data analysis tasks. Setting the kernel’s scale parameter, also referred to as the kernel’s bandwidth, highly affects the performance of the task in han...
Autores principales: | Lindenbaum, Ofir, Salhov, Moshe, Yeredor, Arie, Averbuch, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330274/ https://www.ncbi.nlm.nih.gov/pubmed/32837252 http://dx.doi.org/10.1007/s10618-020-00692-x |
Ejemplares similares
-
EEG Signal Classification Using Manifold Learning and Matrix-Variate Gaussian Model
por: Zhu, Lei, et al.
Publicado: (2021) -
Analysis of Human Brain Structure Reveals that the Brain “Types” Typical of Males Are Also Typical of Females, and Vice Versa
por: Joel, Daphna, et al.
Publicado: (2018) -
Noisy propagation of Gaussian states in optical media with finite bandwidth
por: Teklu, Berihu, et al.
Publicado: (2022) -
On Achievable Distortion in Sending Gaussian Sources over a Bandwidth-Matched Gaussian MAC with No Transmitter CSI
por: Illangakoon, Chathura, et al.
Publicado: (2019) -
Distorted Acquisition of Dynamic Events Sensed by Frequency-Scanning Fiber-Optic Interrogators and a Mitigation Strategy
por: Bhatta, Hari Datta, et al.
Publicado: (2022)