Cargando…
Overexpression of 14-3-3σ Modulates Cholangiocarcinoma Cell Survival by PI3K/Akt Signaling
The protein 14-3-3σ is involved in numerous cellular processes through its ability to bind phosphorylated serine/threonine residues. It is a key regulator of the cell cycle involving in G2 arrest by p53. Deregulation of 14-3-3σ expression has been associated with a large variety of human cancers. Ho...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330627/ https://www.ncbi.nlm.nih.gov/pubmed/32685476 http://dx.doi.org/10.1155/2020/3740418 |
Sumario: | The protein 14-3-3σ is involved in numerous cellular processes through its ability to bind phosphorylated serine/threonine residues. It is a key regulator of the cell cycle involving in G2 arrest by p53. Deregulation of 14-3-3σ expression has been associated with a large variety of human cancers. However, its physiological function and therapeutic significance have rarely been investigated in cholangiocarcinoma. Using immunohistochemistry (IHC), we evaluated 14-3-3σ expression in 65 human extrahepatic cholangiocarcinomas. As a result, we found that 14-3-3σ is expressed in the tissue of 56 patients (86.2%), and its expression is positively correlated with tumor size, lymph node metastasis, and tumor stage. We also explored the significance of 14-3-3σ and found that 14-3-3σ exerts cell type-dependent effects on cell proliferation through PI3K/Akt signaling in both in vitro and in vivo xenograft models. These results suggest that 14-3-3σ assumes a constitutive role in tumorigenesis rather than acting as a cell cycle regulator in cholangiocarcinoma, which makes 14-3-3σ a new potential target for therapeutic intervention. |
---|