Cargando…

Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation

BACKGROUND: It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study their interaction and identify the path toward the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Faruqui, Syed Hasib Akhter, Alaeddini, Adel, Chang, Mike C, Shirinkam, Sara, Jaramillo, Carlos, NajafiRad, Peyman, Wang, Jing, Pugh, Mary Jo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330739/
https://www.ncbi.nlm.nih.gov/pubmed/32554376
http://dx.doi.org/10.2196/16372
_version_ 1783553184894025728
author Faruqui, Syed Hasib Akhter
Alaeddini, Adel
Chang, Mike C
Shirinkam, Sara
Jaramillo, Carlos
NajafiRad, Peyman
Wang, Jing
Pugh, Mary Jo
author_facet Faruqui, Syed Hasib Akhter
Alaeddini, Adel
Chang, Mike C
Shirinkam, Sara
Jaramillo, Carlos
NajafiRad, Peyman
Wang, Jing
Pugh, Mary Jo
author_sort Faruqui, Syed Hasib Akhter
collection PubMed
description BACKGROUND: It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study their interaction and identify the path toward the development of MCC. However, the current graphical models representing MCC are often complex and difficult to analyze. Therefore, it is necessary to develop improved methods for generating these models. OBJECTIVE: This study aimed to summarize the complex graphical models of MCC interactions to improve comprehension and aid analysis. METHODS: We examined the emergence of 5 chronic medical conditions (ie, traumatic brain injury [TBI], posttraumatic stress disorder [PTSD], depression [Depr], substance abuse [SuAb], and back pain [BaPa]) over 5 years among 257,633 veteran patients. We developed 3 algorithms that utilize the second eigenvalue of the graph Laplacian to summarize the complex graphical models of MCC by removing less significant edges. The first algorithm learns a sparse probabilistic graphical model of MCC interactions directly from the data. The second algorithm summarizes an existing probabilistic graphical model of MCC interactions when a supporting data set is available. The third algorithm, which is a variation of the second algorithm, summarizes the existing graphical model of MCC interactions with no supporting data. Finally, we examined the coappearance of the 100 most common terms in the literature of MCC to validate the performance of the proposed model. RESULTS: The proposed summarization algorithms demonstrate considerable performance in extracting major connections among MCC without reducing the predictive accuracy of the resulting graphical models. For the model learned directly from the data, the area under the curve (AUC) performance for predicting TBI, PTSD, BaPa, SuAb, and Depr, respectively, during the next 4 years is as follows—year 2: 79.91%, 84.04%, 78.83%, 82.50%, and 81.47%; year 3: 76.23%, 80.61%, 73.51%, 79.84%, and 77.13%; year 4: 72.38%, 78.22%, 72.96%, 77.92%, and 72.65%; and year 5: 69.51%, 76.15%, 73.04%, 76.72%, and 69.99%, respectively. This demonstrates an overall 12.07% increase in the cumulative sum of AUC in comparison with the classic multilevel temporal Bayesian network. CONCLUSIONS: Using graph summarization can improve the interpretability and the predictive power of the complex graphical models of MCC.
format Online
Article
Text
id pubmed-7330739
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-73307392020-07-06 Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation Faruqui, Syed Hasib Akhter Alaeddini, Adel Chang, Mike C Shirinkam, Sara Jaramillo, Carlos NajafiRad, Peyman Wang, Jing Pugh, Mary Jo JMIR Med Inform Original Paper BACKGROUND: It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study their interaction and identify the path toward the development of MCC. However, the current graphical models representing MCC are often complex and difficult to analyze. Therefore, it is necessary to develop improved methods for generating these models. OBJECTIVE: This study aimed to summarize the complex graphical models of MCC interactions to improve comprehension and aid analysis. METHODS: We examined the emergence of 5 chronic medical conditions (ie, traumatic brain injury [TBI], posttraumatic stress disorder [PTSD], depression [Depr], substance abuse [SuAb], and back pain [BaPa]) over 5 years among 257,633 veteran patients. We developed 3 algorithms that utilize the second eigenvalue of the graph Laplacian to summarize the complex graphical models of MCC by removing less significant edges. The first algorithm learns a sparse probabilistic graphical model of MCC interactions directly from the data. The second algorithm summarizes an existing probabilistic graphical model of MCC interactions when a supporting data set is available. The third algorithm, which is a variation of the second algorithm, summarizes the existing graphical model of MCC interactions with no supporting data. Finally, we examined the coappearance of the 100 most common terms in the literature of MCC to validate the performance of the proposed model. RESULTS: The proposed summarization algorithms demonstrate considerable performance in extracting major connections among MCC without reducing the predictive accuracy of the resulting graphical models. For the model learned directly from the data, the area under the curve (AUC) performance for predicting TBI, PTSD, BaPa, SuAb, and Depr, respectively, during the next 4 years is as follows—year 2: 79.91%, 84.04%, 78.83%, 82.50%, and 81.47%; year 3: 76.23%, 80.61%, 73.51%, 79.84%, and 77.13%; year 4: 72.38%, 78.22%, 72.96%, 77.92%, and 72.65%; and year 5: 69.51%, 76.15%, 73.04%, 76.72%, and 69.99%, respectively. This demonstrates an overall 12.07% increase in the cumulative sum of AUC in comparison with the classic multilevel temporal Bayesian network. CONCLUSIONS: Using graph summarization can improve the interpretability and the predictive power of the complex graphical models of MCC. JMIR Publications 2020-06-17 /pmc/articles/PMC7330739/ /pubmed/32554376 http://dx.doi.org/10.2196/16372 Text en ©Syed Hasib Akhter Faruqui, Adel Alaeddini, Mike C Chang, Sara Shirinkam, Carlos Jaramillo, Peyman NajafiRad, Jing Wang, Mary Jo Pugh. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.06.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Faruqui, Syed Hasib Akhter
Alaeddini, Adel
Chang, Mike C
Shirinkam, Sara
Jaramillo, Carlos
NajafiRad, Peyman
Wang, Jing
Pugh, Mary Jo
Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title_full Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title_fullStr Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title_full_unstemmed Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title_short Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
title_sort summarizing complex graphical models of multiple chronic conditions using the second eigenvalue of graph laplacian: algorithm development and validation
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330739/
https://www.ncbi.nlm.nih.gov/pubmed/32554376
http://dx.doi.org/10.2196/16372
work_keys_str_mv AT faruquisyedhasibakhter summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT alaeddiniadel summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT changmikec summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT shirinkamsara summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT jaramillocarlos summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT najafiradpeyman summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT wangjing summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation
AT pughmaryjo summarizingcomplexgraphicalmodelsofmultiplechronicconditionsusingthesecondeigenvalueofgraphlaplacianalgorithmdevelopmentandvalidation