Cargando…
Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19
Rationale: Given the rapid spread of COVID-19, an updated risk-stratify prognostic tool could help clinicians identify the high-risk patients with worse prognoses. We aimed to develop a non-invasive and easy-to-use prognostic signature by chest CT to individually predict poor outcome (death, need fo...
Autores principales: | Wu, Qingxia, Wang, Shuo, Li, Liang, Qian, Wei, Hu, Yahua, Li, Li, Zhou, Xuezhi, Ma, He, Li, Hongjun, Wang, Meiyun, Qiu, Xiaoming, Zha, Yunfei, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330838/ https://www.ncbi.nlm.nih.gov/pubmed/32641989 http://dx.doi.org/10.7150/thno.46428 |
Ejemplares similares
-
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
por: Wang, Shuo, et al.
Publicado: (2020) -
Radiomics analysis of placenta on T2WI facilitates prediction of postpartum haemorrhage: A multicentre study
por: Wu, Qingxia, et al.
Publicado: (2019) -
Erratum to ‘Radiomics analysis of placenta on T2WI facilitates prediction of postpartum haemorrhage: A multicentre study’
por: Wu, Qingxia, et al.
Publicado: (2020) -
A Computed Tomography-Based Radiomic Prognostic Marker of Advanced High-Grade Serous Ovarian Cancer Recurrence: A Multicenter Study
por: Wei, Wei, et al.
Publicado: (2019) -
Development of a deep learning‐based method to diagnose pulmonary ground‐glass nodules by sequential computed tomography imaging
por: Qiu, Zhixin, et al.
Publicado: (2022)