Cargando…

Magnetic Resonance Imaging as a Novel Method for Elucidating Sediment Burrow Structures and Functions

[Image: see text] Burrow structures produced by various benthic animals in sediments are important components of aquatic ecosystems, allowing the circulation of interstitial water via ingress of fresh bottom water into the burrows upon feeding and intraburrow migration. Although X-ray computed tomog...

Descripción completa

Detalles Bibliográficos
Autores principales: Kohzu, Ayato, Watanabe, Hidehiro, Imai, Akio, Takaya, Nobuhiro, Miura, Shingo, Shimotori, Koichi, Komatsu, Kazuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330907/
https://www.ncbi.nlm.nih.gov/pubmed/32637767
http://dx.doi.org/10.1021/acsomega.8b00192
Descripción
Sumario:[Image: see text] Burrow structures produced by various benthic animals in sediments are important components of aquatic ecosystems, allowing the circulation of interstitial water via ingress of fresh bottom water into the burrows upon feeding and intraburrow migration. Although X-ray computed tomography has been used to visualize burrow structures, it could not reveal the structures in the soft mud in Lake Kasumigaura, where evaluation of the water-circulation effect of burrows is an important issue. Here, we describe the first attempt to use magnetic resonance (MR) imaging (MRI) to visualize intact burrow structures in the soft mud sediment cores collected from a eutrophic lake. Our MRI application clarified the dynamic distribution of burrows inhabited by chironomids in the soft mud that previous studies could not visualize. By examining the relationships between the degree of chloride ion depletion in deeper layers and the burrow density calculated from the MR images, we were able to consistently explain the water-circulation effect of burrows, suggesting the higher reliability of burrow density calculated from MR images. In addition, we were able to evaluate the activity of burrows, which is difficult to achieve in sediment core experiments. We observed a smaller water-circulation effect of burrows on ammonium ions than on chloride ions, suggesting the enhancement of ammonium production or release in burrow-rich sediments.