Cargando…
Fabrication of Transparent UV-Cured Coatings with Allyl-Terminated Hyperbranched Polycarbosilanes and Thiol Silicone Resins
[Image: see text] To improve thermal stability and hardness of UV-cured materials, a series of UV-cured solvent-free coatings were prepared from allyl-terminated hyperbranched polycarbosilanes and thiol silicone resins. The silicone coatings prepared have pencil hardness of 4–9 H, water absorption n...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331026/ https://www.ncbi.nlm.nih.gov/pubmed/32637804 http://dx.doi.org/10.1021/acsomega.0c01338 |
Sumario: | [Image: see text] To improve thermal stability and hardness of UV-cured materials, a series of UV-cured solvent-free coatings were prepared from allyl-terminated hyperbranched polycarbosilanes and thiol silicone resins. The silicone coatings prepared have pencil hardness of 4–9 H, water absorption no more than 0.04 wt %, and transmittance higher than 94%. The temperature for the coatings’ starting thermal decomposition is higher than 236 °C; especially, that of the coating prepared with G1 is as high as 371.1 °C. The UV-cured coatings in this work exhibit much higher pencil hardness than and superior thermal stability to those reported previously. |
---|