Cargando…
Directed acyclic graphs and causal thinking in clinical risk prediction modeling
BACKGROUND: In epidemiology, causal inference and prediction modeling methodologies have been historically distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection strategies for causal questions. Although tools originally designed for pred...
Autores principales: | Piccininni, Marco, Konigorski, Stefan, Rohmann, Jessica L., Kurth, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331263/ https://www.ncbi.nlm.nih.gov/pubmed/32615926 http://dx.doi.org/10.1186/s12874-020-01058-z |
Ejemplares similares
-
Assessing the transportability of clinical prediction models for cognitive impairment using causal models
por: Fehr, Jana, et al.
Publicado: (2023) -
Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations
por: Konigorski, Stefan, et al.
Publicado: (2017) -
Should Cognitive Screening Tests Be Corrected for Age and Education? Insights From a Causal Perspective
por: Piccininni, Marco, et al.
Publicado: (2022) -
Directed Acyclic Graphs: a Tool for Causal Studies in Pediatrics
por: Williams, Thomas C, et al.
Publicado: (2018) -
Using Causal Loop Diagrams (CLDs) to inform the development of Directed Acyclic Graphs (DAGs)
por: Avila-Palencia, I
Publicado: (2023)