Cargando…
A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images
OBJECTIVES: To utilize a deep learning model for automatic detection of abnormalities in chest CT images from COVID-19 patients and compare its quantitative determination performance with radiological residents. METHODS: A deep learning algorithm consisted of lesion detection, segmentation, and loca...
Autores principales: | Ni, Qianqian, Sun, Zhi Yuan, Qi, Li, Chen, Wen, Yang, Yi, Wang, Li, Zhang, Xinyuan, Yang, Liu, Fang, Yi, Xing, Zijian, Zhou, Zhen, Yu, Yizhou, Lu, Guang Ming, Zhang, Long Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331494/ https://www.ncbi.nlm.nih.gov/pubmed/32617690 http://dx.doi.org/10.1007/s00330-020-07044-9 |
Ejemplares similares
-
Dual-source CT for chest pain assessment
por: Johnson, Thorsten R. C., et al.
Publicado: (2007) -
Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network
por: Shiri, Isaac, et al.
Publicado: (2020) -
Chest CT for detecting COVID-19: a systematic review and meta-analysis of diagnostic accuracy
por: Xu, Buyun, et al.
Publicado: (2020) -
Chest CT practice and protocols for COVID-19 from radiation dose management perspective
por: Kalra, Mannudeep K., et al.
Publicado: (2020) -
Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?
por: Jairam, Pushpa M., et al.
Publicado: (2015)