Cargando…

Cost-efficiency analysis of voluntary vaccination against n-serovar diseases using antibody-dependent enhancement: A game approach

Records of epidemics acknowledge immunological multi-serotype illnesses as an important aspect of the occurrence and control of contagious diseases. These patterns occur due to antibody-dependent-enhancement (ADE) among serotype diseases, which leads to infection of secondary infectious classes. One...

Descripción completa

Detalles Bibliográficos
Autores principales: Kabir, K.M. Ariful, Tanimoto, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331570/
https://www.ncbi.nlm.nih.gov/pubmed/32622789
http://dx.doi.org/10.1016/j.jtbi.2020.110379
Descripción
Sumario:Records of epidemics acknowledge immunological multi-serotype illnesses as an important aspect of the occurrence and control of contagious diseases. These patterns occur due to antibody-dependent-enhancement (ADE) among serotype diseases, which leads to infection of secondary infectious classes. One example of this is dengue hemorrhagic fever and dengue shock syndrome, which comprises the following four serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. The evolutionary vaccination game approach is able to shed light on this long-standing issue in a bid to evaluate the success of various control programs. Although immunization is regarded as one of the most accepted approaches for minimizing the risk of infection, cost and efficiency are important factors that must also be considered. To analyze the [Formula: see text]-serovar aspect alongside ADE consequence in voluntary vaccination, this study establishes a new mathematical epidemiological model that is dovetailed with evolutionary game theory, an approach through which we explored two vaccine programs: primary and secondary. Our findings illuminate that the ‘cost-efficiency’ effect for vaccination decision exhibits an impact on controlling [Formula: see text]-serovar infectious diseases and should be designed in such a manner as to avoid adverse effects. Furthermore, our numerical result justifies the fact that adopting ADE significantly boosted emerging disease incidence, it also suggest that the joint vaccine policy works even better when the complex cyclical epidemic outbreak takes place among multi serotypes interactions. Research also exposes that the primary vaccine is a better controlling tool than the secondary; however, introducing a highly-efficiency secondary vaccine against secondary infection plays a key role to control the disease prevalence.