Cargando…

Oxidative stress evaluation of skeletal muscle in ischemia–reperfusion injury using enhanced magnetic resonance imaging

Acute extremity arterial occlusion requires prompt revascularization. Delayed revascularization induces ischemia–reperfusion injury in the skeletal muscle. Organ injury-induced oxidative stress is widely reported, and oxidative stress is heavily involved in ischemia–reperfusion injury. This study ai...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroda, Yoshinori, Togashi, Hitoshi, Uchida, Tetsuro, Haga, Kazuyuki, Yamashita, Atsushi, Sadahiro, Mitsuaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331576/
https://www.ncbi.nlm.nih.gov/pubmed/32616815
http://dx.doi.org/10.1038/s41598-020-67336-4
Descripción
Sumario:Acute extremity arterial occlusion requires prompt revascularization. Delayed revascularization induces ischemia–reperfusion injury in the skeletal muscle. Organ injury-induced oxidative stress is widely reported, and oxidative stress is heavily involved in ischemia–reperfusion injury. This study aimed to evaluate oxidative stress in ischemia–reperfusion rat models using 3-carbamoyl PROXYL enhanced magnetic resonance imaging (3-CP enhanced MRI). Ischemia–reperfusion injury was induced through clamping the right femoral artery in rats, with a 4-h ischemia time in all experiments. 3-CP enhanced MRI was performed to evaluate oxidative stress, and the rats were divided into 3 reperfusion time groups: 0.5, 2, and 24 h. Signal intensity was evaluated using 3-CP enhanced MRI and compared in the ischemia–reperfusion and intact limbs in the same rat. Furthermore, the effect of edaravone (radical scavenger) was evaluated in the 4-h ischemia—24-h reperfusion injury rat model. The signal intensity of the ischemia–reperfusion limb was significantly stronger than that of the intact limb, suggesting that oxidative stress was induced in the ischemia–reperfusion muscle. Edaravone administration reduced the oxidative stress in the ischemia–reperfusion limb. The signal intensity of the ischemia–reperfusion limb was stronger than that of the intact limb, presumably reflecting the oxidative stress in the former. 3-CP MRI examination shows promise for effective assessment of oxidative stress and may facilitate early diagnosis of ischemia–reperfusion injury.