Cargando…

Effects of repetitive Iodine thyroid blocking on the foetal brain and thyroid in rats: a systems biology approach

A single administration of an iodine thyroid blocking agent is usually sufficient to protect thyroid from radioactive iodine and prevent thyroid cancer. Repeated administration of stable iodine (rKI) may be necessary during prolonged or repeated exposure to radioactive iodine. We previously showed t...

Descripción completa

Detalles Bibliográficos
Autores principales: Cohen, David P. A., Benadjaoud, Mohamed Amine, Lestaevel, Phillipe, Lebsir, Dalila, Benderitter, Marc, Souidi, Maâmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331645/
https://www.ncbi.nlm.nih.gov/pubmed/32616734
http://dx.doi.org/10.1038/s41598-020-67564-8
Descripción
Sumario:A single administration of an iodine thyroid blocking agent is usually sufficient to protect thyroid from radioactive iodine and prevent thyroid cancer. Repeated administration of stable iodine (rKI) may be necessary during prolonged or repeated exposure to radioactive iodine. We previously showed that rKI for eight days offers protection without toxic effects in adult rats. However, the effect of rKI administration in the developing foetus is unknown, especially on brain development, although a correlation between impaired maternal thyroid status and a decrease in intelligence quotient of the progeny has been observed. This study revealed distinct gene expression profiles between the progeny of rats receiving either rKI or saline during pregnancy. To understand the implication of these differentially expressed (DE) genes, a systems biology approach was used to construct networks for each organ using three different techniques: Bayesian statistics, sPLS-DA and manual construction of a Process Descriptive (PD) network. The PD network showed DE genes from both organs participating in the same cellular processes that affect mitophagy and neuronal outgrowth. This work may help to evaluate the doctrine for using rKI in case of repetitive or prolonged exposure to radioactive particles upon nuclear accidents.