Cargando…

Amelioration of oxidative stress-mediated apoptosis in copper oxide nanoparticles-induced liver injury in rats by potent antioxidants

The purpose of this study is to investigate the therapeutic efficacy of individual or combined doses of dehydro-epiandrosterone (DHEA) and quercetin in ameliorating some biochemical indices in liver of CuO-NPs intoxicated-rats. CuO-NPs (50 nm) was administered as a daily oral dose 100 mg/kg for 2 we...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelazeim, Samy A., Shehata, Nagwa Ibrahim, Aly, Hanan Farouk, Shams, Shams Gamal Eldin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331709/
https://www.ncbi.nlm.nih.gov/pubmed/32616881
http://dx.doi.org/10.1038/s41598-020-67784-y
Descripción
Sumario:The purpose of this study is to investigate the therapeutic efficacy of individual or combined doses of dehydro-epiandrosterone (DHEA) and quercetin in ameliorating some biochemical indices in liver of CuO-NPs intoxicated-rats. CuO-NPs (50 nm) was administered as a daily oral dose 100 mg/kg for 2 weeks to rats followed by the fore-mentioned antioxidants for 1 month. We highlighted the therapeutic effect of DHEA and quercetin against CuO-NPs toxicity through monitoring the alteration of liver enzyme activity, antioxidant defense mechanism, necrosis, apoptosis, histopathological alterations, and DNA damage. The rats given CuO-NPs only showed marked significant elevation in liver enzymes, alteration in oxidant-antioxidant balance and an elevation in the hepatic inflammatory marker; tumor necrosis factor-α. Additionally, over expression of both caspase-3 and Bax proteins were detected. Whereas, Bcl2 was down regulated and DNA fragmentation was elevated. Moreover, Histopathological examination of hepatic tissue reinforced the previous biochemical results. Co-treatment with either DHEA, quercetin alone or in combination ameliorated the deviated parameters with variable degrees against CuO-NPs toxicity in rat. In conclusion, our findings suggested that the aforementioned treatments exert therapeutic effect in CuO-NPs toxicity by diminishing oxidative stress, mRNA gene expression and hepatic tissues DNA damage.