Cargando…
Explosive Fibonacci-sequence growth into unusual sector-face morphology in poly(l-lactic acid) crystallized with polymeric diluents
Lamellar assembly in unusual sector-face PLLA spherulites from crystallization of poly(l-lactic acid) (PLLA) diluted with amorphous poly(methyl methacrylate) (PMMA). The growth and morphology of the crystalline structures is studied using polarized optical microscopy (POM), atomic-force and scanning...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331819/ https://www.ncbi.nlm.nih.gov/pubmed/32616728 http://dx.doi.org/10.1038/s41598-020-67567-5 |
Sumario: | Lamellar assembly in unusual sector-face PLLA spherulites from crystallization of poly(l-lactic acid) (PLLA) diluted with amorphous poly(methyl methacrylate) (PMMA). The growth and morphology of the crystalline structures is studied using polarized optical microscopy (POM), atomic-force and scanning electron microscopies (AFM, SEM). Crystals are also analyzed using differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The two alternate sectored faces differ dramatically in their optical birefringence and top-surface and interior lamellar assembly. By originating from the nucleus center, an explosive fan-like sector of high-birefringence lamellae is packed by fractal growth from an initial single stalk into hundreds of branches upon reaching the periphery, with the number of stalks increasing roughly by the Fibonacci sequence along the radial distance. The exploded pattern resembles a cross-hatch grating structure, and displays a cauliflower-like fractal-branching of optical birefringence blue/orange stripes. This finding suggests that growth with periodic branching is one of the main mechanisms to fill the ever-expanding space in the spherulitic 3D aggregates. |
---|