Cargando…

Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression

The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardoso, Alisson C., Lam, Nicholas T., Savla, Jainy J., Nakada, Yuji, Pereira, Ana Helena M., Elnwasany, Abdallah, Menendez-Montes, Ivan, Ensley, Emily L., Petric, Ursa Bezan, Sharma, Gaurav, Sherry, A. Dean, Malloy, Craig R., Khemtong, Chalermchai, Kinter, Michael T., Tan, Wilson Lek Wen, Anene-Nzelu, Chukwuemeka George, Foo, Roger Sik-Yin, Nguyen, Ngoc Uyen Nhi, Li, Shujuan, Ahmed, Mahmoud Salama, Elhelaly, Waleed M., Abdisalaam, Salim, Asaithamby, Aroumougame, Xing, Chao, Kanchwala, Mohammed, Vale, Goncalo, Eckert, Kaitlyn M., Mitsche, Matthew A, McDonald, Jeffrey G., Hill, Joseph A., Huang, Linzhang, Shaul, Philip W., Szweda, Luke I., Sadek, Hesham A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331943/
https://www.ncbi.nlm.nih.gov/pubmed/32617517
_version_ 1783553428472987648
author Cardoso, Alisson C.
Lam, Nicholas T.
Savla, Jainy J.
Nakada, Yuji
Pereira, Ana Helena M.
Elnwasany, Abdallah
Menendez-Montes, Ivan
Ensley, Emily L.
Petric, Ursa Bezan
Sharma, Gaurav
Sherry, A. Dean
Malloy, Craig R.
Khemtong, Chalermchai
Kinter, Michael T.
Tan, Wilson Lek Wen
Anene-Nzelu, Chukwuemeka George
Foo, Roger Sik-Yin
Nguyen, Ngoc Uyen Nhi
Li, Shujuan
Ahmed, Mahmoud Salama
Elhelaly, Waleed M.
Abdisalaam, Salim
Asaithamby, Aroumougame
Xing, Chao
Kanchwala, Mohammed
Vale, Goncalo
Eckert, Kaitlyn M.
Mitsche, Matthew A
McDonald, Jeffrey G.
Hill, Joseph A.
Huang, Linzhang
Shaul, Philip W.
Szweda, Luke I.
Sadek, Hesham A.
author_facet Cardoso, Alisson C.
Lam, Nicholas T.
Savla, Jainy J.
Nakada, Yuji
Pereira, Ana Helena M.
Elnwasany, Abdallah
Menendez-Montes, Ivan
Ensley, Emily L.
Petric, Ursa Bezan
Sharma, Gaurav
Sherry, A. Dean
Malloy, Craig R.
Khemtong, Chalermchai
Kinter, Michael T.
Tan, Wilson Lek Wen
Anene-Nzelu, Chukwuemeka George
Foo, Roger Sik-Yin
Nguyen, Ngoc Uyen Nhi
Li, Shujuan
Ahmed, Mahmoud Salama
Elhelaly, Waleed M.
Abdisalaam, Salim
Asaithamby, Aroumougame
Xing, Chao
Kanchwala, Mohammed
Vale, Goncalo
Eckert, Kaitlyn M.
Mitsche, Matthew A
McDonald, Jeffrey G.
Hill, Joseph A.
Huang, Linzhang
Shaul, Philip W.
Szweda, Luke I.
Sadek, Hesham A.
author_sort Cardoso, Alisson C.
collection PubMed
description The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.
format Online
Article
Text
id pubmed-7331943
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-73319432020-08-01 Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression Cardoso, Alisson C. Lam, Nicholas T. Savla, Jainy J. Nakada, Yuji Pereira, Ana Helena M. Elnwasany, Abdallah Menendez-Montes, Ivan Ensley, Emily L. Petric, Ursa Bezan Sharma, Gaurav Sherry, A. Dean Malloy, Craig R. Khemtong, Chalermchai Kinter, Michael T. Tan, Wilson Lek Wen Anene-Nzelu, Chukwuemeka George Foo, Roger Sik-Yin Nguyen, Ngoc Uyen Nhi Li, Shujuan Ahmed, Mahmoud Salama Elhelaly, Waleed M. Abdisalaam, Salim Asaithamby, Aroumougame Xing, Chao Kanchwala, Mohammed Vale, Goncalo Eckert, Kaitlyn M. Mitsche, Matthew A McDonald, Jeffrey G. Hill, Joseph A. Huang, Linzhang Shaul, Philip W. Szweda, Luke I. Sadek, Hesham A. Nat Metab Article The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies. 2020-02 2020-02-20 /pmc/articles/PMC7331943/ /pubmed/32617517 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Cardoso, Alisson C.
Lam, Nicholas T.
Savla, Jainy J.
Nakada, Yuji
Pereira, Ana Helena M.
Elnwasany, Abdallah
Menendez-Montes, Ivan
Ensley, Emily L.
Petric, Ursa Bezan
Sharma, Gaurav
Sherry, A. Dean
Malloy, Craig R.
Khemtong, Chalermchai
Kinter, Michael T.
Tan, Wilson Lek Wen
Anene-Nzelu, Chukwuemeka George
Foo, Roger Sik-Yin
Nguyen, Ngoc Uyen Nhi
Li, Shujuan
Ahmed, Mahmoud Salama
Elhelaly, Waleed M.
Abdisalaam, Salim
Asaithamby, Aroumougame
Xing, Chao
Kanchwala, Mohammed
Vale, Goncalo
Eckert, Kaitlyn M.
Mitsche, Matthew A
McDonald, Jeffrey G.
Hill, Joseph A.
Huang, Linzhang
Shaul, Philip W.
Szweda, Luke I.
Sadek, Hesham A.
Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title_full Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title_fullStr Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title_full_unstemmed Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title_short Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression
title_sort mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331943/
https://www.ncbi.nlm.nih.gov/pubmed/32617517
work_keys_str_mv AT cardosoalissonc mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT lamnicholast mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT savlajainyj mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT nakadayuji mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT pereiraanahelenam mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT elnwasanyabdallah mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT menendezmontesivan mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT ensleyemilyl mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT petricursabezan mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT sharmagaurav mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT sherryadean mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT malloycraigr mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT khemtongchalermchai mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT kintermichaelt mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT tanwilsonlekwen mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT anenenzeluchukwuemekageorge mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT foorogersikyin mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT nguyenngocuyennhi mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT lishujuan mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT ahmedmahmoudsalama mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT elhelalywaleedm mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT abdisalaamsalim mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT asaithambyaroumougame mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT xingchao mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT kanchwalamohammed mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT valegoncalo mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT eckertkaitlynm mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT mitschematthewa mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT mcdonaldjeffreyg mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT hilljosepha mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT huanglinzhang mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT shaulphilipw mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT szwedalukei mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression
AT sadekheshama mitochondrialsubstrateutilizationregulatescardiomyocytecellcycleprogression