Cargando…
Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria
BACKGROUND: With the growing adoption of the electronic health record (EHR) worldwide over the last decade, new opportunities exist for leveraging EHR data for detection of rare diseases. Rare diseases are often not diagnosed or delayed in diagnosis by clinicians who encounter them infrequently. One...
Autores principales: | Cohen, Aaron M., Chamberlin, Steven, Deloughery, Thomas, Nguyen, Michelle, Bedrick, Steven, Meninger, Stephen, Ko, John J., Amin, Jigar J., Wei, Alex J., Hersh, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331997/ https://www.ncbi.nlm.nih.gov/pubmed/32614911 http://dx.doi.org/10.1371/journal.pone.0235574 |
Ejemplares similares
-
Correction: Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria
por: Cohen, Aaron M., et al.
Publicado: (2020) -
Reducing diagnostic delays in Acute Hepatic Porphyria using electronic health records data and machine learning: a multicenter development and validation study
por: Bhasuran, Balu, et al.
Publicado: (2023) -
Evaluation of patient-level retrieval from electronic health record data for a cohort discovery task
por: Chamberlin, Steven R, et al.
Publicado: (2020) -
Test collections for electronic health record-based clinical information retrieval
por: Wang, Yanshan, et al.
Publicado: (2019) -
PB2354: THE IMPACT OF ACUTE HEPATIC PORPHYRIA ON MENTAL HEALTH: RESULTS FROM THE PORPHYRIA WORLDWIDE PATIENT EXPERIENCE RESEARCH (POWER) STUDY
por: Nance, D., et al.
Publicado: (2022)