Cargando…
Benchmarking machine learning models on multi-centre eICU critical care dataset
Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and public benchmarks. Recent availability of large clinica...
Autores principales: | Sheikhalishahi, Seyedmostafa, Balaraman, Vevake, Osmani, Venet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332047/ https://www.ncbi.nlm.nih.gov/pubmed/32614874 http://dx.doi.org/10.1371/journal.pone.0235424 |
Ejemplares similares
-
Delirium prediction in the ICU: designing a screening tool for preventive interventions
por: Bhattacharyya, Anirban, et al.
Publicado: (2022) -
Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review
por: Sheikhalishahi, Seyedmostafa, et al.
Publicado: (2019) -
Circadian rhythm in critically ill patients: Insights from the eICU Database
por: Beyer, Sebastian E., et al.
Publicado: (2021) -
E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database
por: Safaei, Nima, et al.
Publicado: (2022) -
The eICU Collaborative Research Database, a freely available multi-center database for critical care research
por: Pollard, Tom J., et al.
Publicado: (2018)