Cargando…
Application of deep neural network and deep reinforcement learning in wireless communication
OBJECTIVE: To explore the application of deep neural networks (DNNs) and deep reinforcement learning (DRL) in wireless communication and accelerate the development of the wireless communication industry. METHOD: This study proposes a simple cognitive radio scenario consisting of only one primary use...
Autores principales: | Li, Ming, Li, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332070/ https://www.ncbi.nlm.nih.gov/pubmed/32614858 http://dx.doi.org/10.1371/journal.pone.0235447 |
Ejemplares similares
-
Deep reinforcement learning for wireless networks
por: Yu, F Richard, et al.
Publicado: (2019) -
Deep Reinforcement Learning for Attacking Wireless Sensor Networks
por: Parras, Juan, et al.
Publicado: (2021) -
Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network
por: Gong, Zheng, et al.
Publicado: (2023) -
Scheduling and Power Control for Wireless Multicast Systems via Deep Reinforcement Learning †
por: Raghu, Ramkumar, et al.
Publicado: (2021) -
A Novel Deep Learning-Based Cooperative Communication Channel Model for Wireless Underground Sensor Networks
por: Radhakrishnan, Kanthavel, et al.
Publicado: (2022)