Cargando…
A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study
BACKGROUND: The coronavirus disease (COVID-19) has become an urgent and serious global public health crisis. Community engagement is the first line of defense in the fight against infectious diseases, and general practitioners (GPs) play an important role in it. GPs are facing unique challenges from...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332157/ https://www.ncbi.nlm.nih.gov/pubmed/32540845 http://dx.doi.org/10.2196/19786 |
_version_ | 1783553474728820736 |
---|---|
author | Liu, Ying Wang, Zhixiao Ren, Jingjing Tian, Yu Zhou, Min Zhou, Tianshu Ye, Kangli Zhao, Yinghao Qiu, Yunqing Li, Jingsong |
author_facet | Liu, Ying Wang, Zhixiao Ren, Jingjing Tian, Yu Zhou, Min Zhou, Tianshu Ye, Kangli Zhao, Yinghao Qiu, Yunqing Li, Jingsong |
author_sort | Liu, Ying |
collection | PubMed |
description | BACKGROUND: The coronavirus disease (COVID-19) has become an urgent and serious global public health crisis. Community engagement is the first line of defense in the fight against infectious diseases, and general practitioners (GPs) play an important role in it. GPs are facing unique challenges from disasters and pandemics in delivering health care. However, there is still no suitable mobile management system that can help GPs collect data, dynamically assess risks, and effectively triage or follow-up with patients with COVID-19. OBJECTIVE: The aim of this study is to design, develop, and deploy a mobile-based decision support system for COVID-19 (DDC19) to assist GPs in collecting data, assessing risk, triaging, managing, and following up with patients during the COVID-19 outbreak. METHODS: Based on the actual scenarios and the process of patients using health care, we analyzed the key issues that need to be solved and designed the main business flowchart of DDC19. We then constructed a COVID-19 dynamic risk stratification model with high recall and clinical interpretability, which was based on a multiclass logistic regression algorithm. Finally, through a 10-fold cross-validation to quantitatively evaluate the risk stratification ability of the model, a total of 2243 clinical data consisting of 36 dimension clinical features from fever clinics were used for training and evaluation of the model. RESULTS: DDC19 is composed of three parts: mobile terminal apps for the patient-end and GP-end, and the database system. All mobile terminal devices were wirelessly connected to the back end data center to implement request sending and data transmission. We used low risk, moderate risk, and high risk as labels, and adopted a 10-fold cross-validation method to evaluate and test the COVID-19 dynamic risk stratification model in different scenarios (different dimensions of personal clinical data accessible at an earlier stage). The data set dimensions were (2243, 15) when only using the data of patients’ demographic information, clinical symptoms, and contact history; (2243, 35) when the results of blood tests were added; and (2243, 36) after obtaining the computed tomography imaging results of the patient. The average value of the three classification results of the macro–area under the curve were all above 0.71 in each scenario. CONCLUSIONS: DCC19 is a mobile decision support system designed and developed to assist GPs in providing dynamic risk assessments for patients with suspected COVID-19 during the outbreak, and the model had a good ability to predict risk levels in any scenario it covered. |
format | Online Article Text |
id | pubmed-7332157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-73321572020-07-06 A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study Liu, Ying Wang, Zhixiao Ren, Jingjing Tian, Yu Zhou, Min Zhou, Tianshu Ye, Kangli Zhao, Yinghao Qiu, Yunqing Li, Jingsong J Med Internet Res Original Paper BACKGROUND: The coronavirus disease (COVID-19) has become an urgent and serious global public health crisis. Community engagement is the first line of defense in the fight against infectious diseases, and general practitioners (GPs) play an important role in it. GPs are facing unique challenges from disasters and pandemics in delivering health care. However, there is still no suitable mobile management system that can help GPs collect data, dynamically assess risks, and effectively triage or follow-up with patients with COVID-19. OBJECTIVE: The aim of this study is to design, develop, and deploy a mobile-based decision support system for COVID-19 (DDC19) to assist GPs in collecting data, assessing risk, triaging, managing, and following up with patients during the COVID-19 outbreak. METHODS: Based on the actual scenarios and the process of patients using health care, we analyzed the key issues that need to be solved and designed the main business flowchart of DDC19. We then constructed a COVID-19 dynamic risk stratification model with high recall and clinical interpretability, which was based on a multiclass logistic regression algorithm. Finally, through a 10-fold cross-validation to quantitatively evaluate the risk stratification ability of the model, a total of 2243 clinical data consisting of 36 dimension clinical features from fever clinics were used for training and evaluation of the model. RESULTS: DDC19 is composed of three parts: mobile terminal apps for the patient-end and GP-end, and the database system. All mobile terminal devices were wirelessly connected to the back end data center to implement request sending and data transmission. We used low risk, moderate risk, and high risk as labels, and adopted a 10-fold cross-validation method to evaluate and test the COVID-19 dynamic risk stratification model in different scenarios (different dimensions of personal clinical data accessible at an earlier stage). The data set dimensions were (2243, 15) when only using the data of patients’ demographic information, clinical symptoms, and contact history; (2243, 35) when the results of blood tests were added; and (2243, 36) after obtaining the computed tomography imaging results of the patient. The average value of the three classification results of the macro–area under the curve were all above 0.71 in each scenario. CONCLUSIONS: DCC19 is a mobile decision support system designed and developed to assist GPs in providing dynamic risk assessments for patients with suspected COVID-19 during the outbreak, and the model had a good ability to predict risk levels in any scenario it covered. JMIR Publications 2020-06-29 /pmc/articles/PMC7332157/ /pubmed/32540845 http://dx.doi.org/10.2196/19786 Text en ©Ying Liu, Zhixiao Wang, Jingjing Ren, Yu Tian, Min Zhou, Tianshu Zhou, Kangli Ye, Yinghao Zhao, Yunqing Qiu, Jingsong Li. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.06.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Liu, Ying Wang, Zhixiao Ren, Jingjing Tian, Yu Zhou, Min Zhou, Tianshu Ye, Kangli Zhao, Yinghao Qiu, Yunqing Li, Jingsong A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title | A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title_full | A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title_fullStr | A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title_full_unstemmed | A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title_short | A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study |
title_sort | covid-19 risk assessment decision support system for general practitioners: design and development study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332157/ https://www.ncbi.nlm.nih.gov/pubmed/32540845 http://dx.doi.org/10.2196/19786 |
work_keys_str_mv | AT liuying acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT wangzhixiao acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT renjingjing acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT tianyu acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhoumin acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhoutianshu acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT yekangli acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhaoyinghao acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT qiuyunqing acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT lijingsong acovid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT liuying covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT wangzhixiao covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT renjingjing covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT tianyu covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhoumin covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhoutianshu covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT yekangli covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT zhaoyinghao covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT qiuyunqing covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy AT lijingsong covid19riskassessmentdecisionsupportsystemforgeneralpractitionersdesignanddevelopmentstudy |