Cargando…

Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway

The stiffness of the extracellular matrix (ECM) plays an important role in regulating the cellular programming. However, the mechanical characteristics of ECM affecting cell differentiation are still under investigated. Herein, we aimed to study the effect of ECM substrate stiffness on macrophage po...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Mimi, Zhang, Yu, Zhou, Pinghui, Liu, Xingzhi, Zhao, Huan, Zhou, Xichao, Gu, Qiaoli, Li, Bin, Zhu, Xuesong, Shi, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332470/
https://www.ncbi.nlm.nih.gov/pubmed/32637751
http://dx.doi.org/10.1016/j.bioactmat.2020.05.004
Descripción
Sumario:The stiffness of the extracellular matrix (ECM) plays an important role in regulating the cellular programming. However, the mechanical characteristics of ECM affecting cell differentiation are still under investigated. Herein, we aimed to study the effect of ECM substrate stiffness on macrophage polarization. We prepared polyacrylamide hydrogels with different substrate stiffness, respectively. After the hydrogels were confirmed to have a good biocompatibility, the bone marrow-derived macrophages (BMMs) from mice were incubated on the hydrogels. With simulated by the low substrate stiffness, BMMs displayed an enhanced expression of CD86 on the cell surface and production of reactive oxygen species (ROS) in cells, and secreted more IL-1β and TNF-α in the supernatant. On the contrary, stressed by the medium stiffness, BMMs expressed more CD206, produced less ROS, and secreted more IL-4 and TGF-β. In vivo study by delivered the hydrogels subcutaneously in mice, more CD68(+)CD86(+) cells around the hydrogels with the low substrate stiffness were observed while more CD68(+)CD206(+) cells near by the middle stiffness hydrogels. In addition, the expressions of NIK, phosphorylated p65 (pi-p65) and phosphorylated IκB (pi-IκB) were significantly increased after stimulation with low stiffness in BMMs. Taken together, these findings demonstrated that substrate stiffness could affect macrophages polarization. Low substrate stiffness promoted BMMs to shift to classically activated macrophages (M1) and the middle one to alternatively activated macrophages (M2), through modulating ROS-initiated NF-κB pathway. Therefore, we anticipated ECM-based substrate stiffness with immune modulation would be under consideration in the clinical applications if necessary.