Cargando…

A reformulation of pLSA for uncertainty estimation and hypothesis testing in bio-imaging

MOTIVATION: Probabilistic latent semantic analysis (pLSA) is commonly applied to describe mass spectra (MS) images. However, the method does not provide certain outputs necessary for the quantitative scientific interpretation of data. In particular, it lacks assessment of statistical uncertainty and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tar, P D, Thacker, N A, Deepaisarn, S, O’Connor, J P B, McMahon, A W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332574/
https://www.ncbi.nlm.nih.gov/pubmed/32348460
http://dx.doi.org/10.1093/bioinformatics/btaa270
Descripción
Sumario:MOTIVATION: Probabilistic latent semantic analysis (pLSA) is commonly applied to describe mass spectra (MS) images. However, the method does not provide certain outputs necessary for the quantitative scientific interpretation of data. In particular, it lacks assessment of statistical uncertainty and the ability to perform hypothesis testing. We show how linear Poisson modelling advances pLSA, giving covariances on model parameters and supporting [Formula: see text] testing for the presence/absence of MS signal components. As an example, this is useful for the identification of pathology in MALDI biological samples. We also show potential wider applicability, beyond MS, using magnetic resonance imaging (MRI) data from colorectal xenograft models. RESULTS: Simulations and MALDI spectra of a stroke-damaged rat brain show MS signals from pathological tissue can be quantified. MRI diffusion data of control and radiotherapy-treated tumours further show high sensitivity hypothesis testing for treatment effects. Successful [Formula: see text] and degrees-of-freedom are computed, allowing null-hypothesis thresholding at high levels of confidence. AVAILABILITY AND IMPLEMENTATION: Open-source image analysis software available from TINA Vision, www.tina-vision.net. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.