Cargando…

Transmission of SARS-CoV-2 via fecal-oral and aerosols–borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies

The advent of novel human coronavirus (SARS-CoV-2) and its potential transmission via fecal-oral and aerosols-borne routes are upcoming challenges to understand the fate of the virus in the environment. In this short communication, we specifically looked at the possibilities of these transmission ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Arslan, Muhammad, Xu, Bin, Gamal El-Din, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332911/
https://www.ncbi.nlm.nih.gov/pubmed/32652357
http://dx.doi.org/10.1016/j.scitotenv.2020.140709
Descripción
Sumario:The advent of novel human coronavirus (SARS-CoV-2) and its potential transmission via fecal-oral and aerosols-borne routes are upcoming challenges to understand the fate of the virus in the environment. In this short communication, we specifically looked at the possibilities of these transmission routes based on the available literature directly related to the SARS-CoV-2 as well as on the closer phylogenetic relatives such as SARS-CoV-1. The available data suggest that, in addition to human-to-human contact, the virus may spread via fecal-oral and aerosols-borne routes. Existing knowledge states that coronaviruses have low stability in the environment due to the natural action of oxidants that disrupt the viral envelope. Previous recommended dosage of chlorination has been found to be not sufficient to inactivate SARS-CoV-2 in places where viral load is high such as hospitals and airports. Although there is no current evidence showing that coronaviruses can be transmitted through contaminated drinking water, there is a growing concern on the impact of the current pandemic wave on underprivileged societies because of their poor wastewater treatment infrastructures, overpopulation, and outbreak management strategies. More research is encouraged to trace the actual fate of SARS-CoV-2 in the environment and to develop/revise the disinfection strategies accordingly.