Cargando…

Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins

BACKGROUND: Cerebral ischemia (CI) can lead to ischemic stroke. The most effective therapy for cerebral ischemic stroke is the early restoration of blood reperfusion. However, reperfusion after CI can result in cerebral ischemia reperfusion (CI/R) injury. This study aimed to detect the effect of eri...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jia, Zhou, Dong, Yan, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333167/
https://www.ncbi.nlm.nih.gov/pubmed/32647682
http://dx.doi.org/10.21037/atm-20-4258
_version_ 1783553695503351808
author He, Jia
Zhou, Dong
Yan, Bo
author_facet He, Jia
Zhou, Dong
Yan, Bo
author_sort He, Jia
collection PubMed
description BACKGROUND: Cerebral ischemia (CI) can lead to ischemic stroke. The most effective therapy for cerebral ischemic stroke is the early restoration of blood reperfusion. However, reperfusion after CI can result in cerebral ischemia reperfusion (CI/R) injury. This study aimed to detect the effect of eriocitrin on cerebral I/R injury and investigate the underlying mechanism. METHODS: Seventy male Sprague-Dawley (SD) rats were randomly divided into 5 groups: the control group, the cerebral I/R group, the I/R + eriocitrin 8 mg/kg group, the I/R + eriocitrin 16 mg/kg group, and the I/R + eriocitrin 32 mg/kg group. Different doses of eriocitrin or 0.5% carboxymethyl cellulose sodium were administrated to the rats once daily for 7 days before middle cerebral artery occlusion (MCAO). PCR staining was performed to observe cerebral infarction. Hematoxylin and eosin (H&E) staining was carried out to observe the damage to the brain tissue. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative mRNA levels of related molecules. Western blot was used to detect the expression of related proteins. The detection kits were used to detect superoxide dismutase (SOD) and lactic dehydrogenase (LDH) activity, and malondialdehyde (MDA) content respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect TNF-radiation, interleukin-6 (IL-6), and interleukin-10 (IL-10). RESULTS: The results showed that Eriocitrin significantly reduced the cerebral infarct volume, cerebral water content, and cerebral indexes. Eriocitrin treatment alleviated pathological injury, promoted cell proliferation, and inhibited cell apoptosis. Eriocitrin upregulated SOD activity and downregulated MDA and LDH content. Eriocitrin also effectively decreased the levels of IL-6 and tumor necrosis factor-α (TNF-α), but increased the content of IL-10 in serum and brain tissues. Furthermore, Eriocitrin increased the phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), as well as the expressions of heme-oxygenase-1 (HO-1) and quinine oxidoreductase 1 (NQO1). Moreover, Eriocitrin decreased the phosphorylation of nuclear factor-κB (NF-κB) p65. CONCLUSIONS: Our results indicated that Eriocitrin attenuated oxidative injury and inflammatory response in rats with CI/R via the Nrf2/HO-1/NQO1/NF-κB signaling pathway.
format Online
Article
Text
id pubmed-7333167
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher AME Publishing Company
record_format MEDLINE/PubMed
spelling pubmed-73331672020-07-08 Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins He, Jia Zhou, Dong Yan, Bo Ann Transl Med Original Article BACKGROUND: Cerebral ischemia (CI) can lead to ischemic stroke. The most effective therapy for cerebral ischemic stroke is the early restoration of blood reperfusion. However, reperfusion after CI can result in cerebral ischemia reperfusion (CI/R) injury. This study aimed to detect the effect of eriocitrin on cerebral I/R injury and investigate the underlying mechanism. METHODS: Seventy male Sprague-Dawley (SD) rats were randomly divided into 5 groups: the control group, the cerebral I/R group, the I/R + eriocitrin 8 mg/kg group, the I/R + eriocitrin 16 mg/kg group, and the I/R + eriocitrin 32 mg/kg group. Different doses of eriocitrin or 0.5% carboxymethyl cellulose sodium were administrated to the rats once daily for 7 days before middle cerebral artery occlusion (MCAO). PCR staining was performed to observe cerebral infarction. Hematoxylin and eosin (H&E) staining was carried out to observe the damage to the brain tissue. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative mRNA levels of related molecules. Western blot was used to detect the expression of related proteins. The detection kits were used to detect superoxide dismutase (SOD) and lactic dehydrogenase (LDH) activity, and malondialdehyde (MDA) content respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect TNF-radiation, interleukin-6 (IL-6), and interleukin-10 (IL-10). RESULTS: The results showed that Eriocitrin significantly reduced the cerebral infarct volume, cerebral water content, and cerebral indexes. Eriocitrin treatment alleviated pathological injury, promoted cell proliferation, and inhibited cell apoptosis. Eriocitrin upregulated SOD activity and downregulated MDA and LDH content. Eriocitrin also effectively decreased the levels of IL-6 and tumor necrosis factor-α (TNF-α), but increased the content of IL-10 in serum and brain tissues. Furthermore, Eriocitrin increased the phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), as well as the expressions of heme-oxygenase-1 (HO-1) and quinine oxidoreductase 1 (NQO1). Moreover, Eriocitrin decreased the phosphorylation of nuclear factor-κB (NF-κB) p65. CONCLUSIONS: Our results indicated that Eriocitrin attenuated oxidative injury and inflammatory response in rats with CI/R via the Nrf2/HO-1/NQO1/NF-κB signaling pathway. AME Publishing Company 2020-06 /pmc/articles/PMC7333167/ /pubmed/32647682 http://dx.doi.org/10.21037/atm-20-4258 Text en 2020 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Original Article
He, Jia
Zhou, Dong
Yan, Bo
Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title_full Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title_fullStr Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title_full_unstemmed Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title_short Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins
title_sort eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of nrf2/nqo-1/ho-1/nf-κb p65 proteins
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333167/
https://www.ncbi.nlm.nih.gov/pubmed/32647682
http://dx.doi.org/10.21037/atm-20-4258
work_keys_str_mv AT hejia eriocitrinalleviatesoxidativestressandinflammatoryresponseincerebralischemiareperfusionratsbyregulatingphosphorylationlevelsofnrf2nqo1ho1nfkbp65proteins
AT zhoudong eriocitrinalleviatesoxidativestressandinflammatoryresponseincerebralischemiareperfusionratsbyregulatingphosphorylationlevelsofnrf2nqo1ho1nfkbp65proteins
AT yanbo eriocitrinalleviatesoxidativestressandinflammatoryresponseincerebralischemiareperfusionratsbyregulatingphosphorylationlevelsofnrf2nqo1ho1nfkbp65proteins