Cargando…
Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy
BACKGROUND: The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. M...
Autores principales: | Yang, Seung Woo, Hyon, Yun Kyong, Na, Hyun Seok, Jin, Long, Lee, Jae Geun, Park, Jong Mok, Lee, Ji Yong, Shin, Ju Hyun, Lim, Jae Sung, Na, Yong Gil, Jeon, Kiwan, Ha, Taeyoung, Kim, Jinbum, Song, Ki Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333255/ https://www.ncbi.nlm.nih.gov/pubmed/32620102 http://dx.doi.org/10.1186/s12894-020-00662-x |
Ejemplares similares
-
A Systematic Review on Comparative Analyses between Ureteroscopic Lithotripsy and Shock-Wave Lithotripsy for Ureter Stone According to Stone Size
por: Jung, Hae Do, et al.
Publicado: (2021) -
Evaluation of Possible Predictive Variables for the Outcome of Shock Wave Lithotripsy of Renal Stones
por: Park, Yong Il, et al.
Publicado: (2010) -
Shock-wave lithotripsy or ureterorenoscopy for renal stones?
por: Ferraro, Pietro Manuel, et al.
Publicado: (2018) -
Association between time to lithotripsy and stone-free rate in patients with ureteral stones undergoing shock wave lithotripsy
por: Washino, Satoshi, et al.
Publicado: (2021) -
Shock Wave Lithotripsy in Ureteral Stones: Evaluation of Patient and Stone Related Predictive Factors
por: Yazici, Ozgur, et al.
Publicado: (2015)