Cargando…
Constructing an automatic diagnosis and severity-classification model for acromegaly using facial photographs by deep learning
Due to acromegaly’s insidious onset and slow progression, its diagnosis is usually delayed, thus causing severe complications and treatment difficulty. A convenient screening method is imperative. Based on our previous work, we herein developed a new automatic diagnosis and severity-classification m...
Autores principales: | Kong, Yanguo, Kong, Xiangyi, He, Cheng, Liu, Changsong, Wang, Liting, Su, Lijuan, Gao, Jun, Guo, Qi, Cheng, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333291/ https://www.ncbi.nlm.nih.gov/pubmed/32620135 http://dx.doi.org/10.1186/s13045-020-00925-y |
Ejemplares similares
-
Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods
por: Kong, Xiangyi, et al.
Publicado: (2017) -
Automatic Facial Palsy Diagnosis as a Classification Problem Using Regional Information Extracted from a Photograph
por: Parra-Dominguez, Gemma S., et al.
Publicado: (2022) -
Survivin overexpression is potentially associated with pituitary adenoma invasiveness
por: Kong, Xiangyi, et al.
Publicado: (2017) -
Neuroprotective effects of allicin on ischemia-reperfusion brain injury
por: Kong, Xiangyi, et al.
Publicado: (2017) -
Expression signatures and roles of MicroRNAs in human oesophageal adenocarcinomas
por: Kong, Xiangyi, et al.
Publicado: (2017)