Cargando…
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
Single-cell RNA-seq (scRNA-seq) profiles gene expression of individual cells. Unique molecular identifiers (UMIs) remove duplicates in read counts resulting from polymerase chain reaction, a major source of noise. For scRNA-seq data lacking UMIs, we propose quasi-UMIs: quantile normalization of read...
Autores principales: | Townes, F. William, Irizarry, Rafael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333325/ https://www.ncbi.nlm.nih.gov/pubmed/32620142 http://dx.doi.org/10.1186/s13059-020-02078-0 |
Ejemplares similares
-
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
por: Townes, F. William, et al.
Publicado: (2019) -
Removing technical variability in RNA-seq data using conditional quantile normalization
por: Hansen, Kasper D., et al.
Publicado: (2012) -
BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq
por: Gustafsson, Johan, et al.
Publicado: (2021) -
AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
por: Thibodeau, Asa, et al.
Publicado: (2021) -
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
por: Law, Charity W, et al.
Publicado: (2014)