Cargando…
The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis
BACKGROUND: Ageing is associated with physical and cognitive decline, affecting independence and quality of life in older people. Recent studies show that in particular executive functions are important for daily-life function and mobility. This systematic review investigated the effectiveness of co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333372/ https://www.ncbi.nlm.nih.gov/pubmed/32636957 http://dx.doi.org/10.1186/s11556-020-00240-y |
Sumario: | BACKGROUND: Ageing is associated with physical and cognitive decline, affecting independence and quality of life in older people. Recent studies show that in particular executive functions are important for daily-life function and mobility. This systematic review investigated the effectiveness of cognitive-motor training including exergaming on executive function (EF, set-shifting, working memory, inhibitory control) in healthy older people. METHODS: An electronic database search for randomised controlled trials (RCT), controlled clinical trials (CCT) and parallel group trials was performed using MEDLINE, EMBASE, and PsychINFO following PRISMA guidelines. Inclusion criteria were: (1) community-dwelling participants > 60 years without a medical condition or medical treatment, (2) reporting at least one cognitive-motor intervention while standing or walking, (3) use of dual-task interventions using traditional methods or modern technology to deliver a cognitive-motor task, (4) inclusion of at least one cognitive outcome. The PEDro scale was used for quality assessment. RESULTS: A total of 1557 studies were retrieved, of which 25 studies were included in this review. Eleven studies used a technology-based dual-task intervention, while 14 trials conducted a general cognitive-motor training. The age range of the cohort was 69 to 87 years. The interventions demonstrated positive effects on global cognitive function [mean difference 0.6, 95% CI 0.29–0.90] and inhibitory control [mean difference 0.61, 95% CI 0.28–0.94]. Effects were heterogeneous (I(2) range: 60–95) and did not remain after a sensitivity analysis. Processing speed and dual-task costs also improved, but meta-analysis was not possible. CONCLUSION: Cognitive-motor and technology-based interventions had a positive impact on some cognitive functions. Dual-task interventions led to improvements of domains related global cognitive functions and inhibitory control. Likewise, technology-based exergame interventions improved functions related to processing speed, attentional and inhibitory control. Training interventions with a certain level of exercise load such as progression in difficulty and task specificity were more effective to gain task-related adaptations on cognitive functions. |
---|