Cargando…

Single-cell ATAC-seq signal extraction and enhancement with SCATE

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is the state-of-the-art technology for analyzing genome-wide regulatory landscapes in single cells. Single-cell ATAC-seq data are sparse and noisy, and analyzing such data is challenging. Existing computational methods ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Zhicheng, Zhou, Weiqiang, Hou, Wenpin, Ji, Hongkai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333383/
https://www.ncbi.nlm.nih.gov/pubmed/32620137
http://dx.doi.org/10.1186/s13059-020-02075-3
Descripción
Sumario:Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is the state-of-the-art technology for analyzing genome-wide regulatory landscapes in single cells. Single-cell ATAC-seq data are sparse and noisy, and analyzing such data is challenging. Existing computational methods cannot accurately reconstruct activities of individual cis-regulatory elements (CREs) in individual cells or rare cell subpopulations. We present a new statistical framework, SCATE, that adaptively integrates information from co-activated CREs, similar cells, and publicly available regulome data to substantially increase the accuracy for estimating activities of individual CREs. We demonstrate that SCATE can be used to better reconstruct the regulatory landscape of a heterogeneous sample.