Cargando…
Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis
The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333479/ https://www.ncbi.nlm.nih.gov/pubmed/31065691 http://dx.doi.org/10.1093/jmcb/mjz031 |
_version_ | 1783553761709391872 |
---|---|
author | Nørgaard, Katrine Müller, Carolin Christensen, Nadja Chiloeches, María L Madsen, Cesilie L Nielsen, Sabine S Thingholm, Tine E Belcheva, Antoaneta |
author_facet | Nørgaard, Katrine Müller, Carolin Christensen, Nadja Chiloeches, María L Madsen, Cesilie L Nielsen, Sabine S Thingholm, Tine E Belcheva, Antoaneta |
author_sort | Nørgaard, Katrine |
collection | PubMed |
description | The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing mutations such as mutations in the DNA mismatch repair (MMR) are present, is unclear. Inactivation of the MMR system has long been linked to colorectal cancer; however, little is known about its role in the regulation of the colonic homeostasis. It has been shown that loss of MMR promotes the proliferation of colon epithelial cells that renders them highly susceptible to transformation. The mechanism through which MMR mediates this effect, yet, remains to be determined. Using an MMR-deficient mouse model, we show that increased methylation of Dickkopf1 impacts its expression, and consequently, the ability to negatively regulate WNT signaling. As a result, excessive levels of active β-catenin promote strong crypt progenitor-like phenotype and abnormal proliferation. Under these settings, the development and function of the goblet cells are affected. MMR-deficient mice have fewer goblet cells with enlarged mucin-loaded vesicles. We further show that MMR inactivation impacts the WNT–BMP signaling crosstalk. |
format | Online Article Text |
id | pubmed-7333479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-73334792020-07-13 Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis Nørgaard, Katrine Müller, Carolin Christensen, Nadja Chiloeches, María L Madsen, Cesilie L Nielsen, Sabine S Thingholm, Tine E Belcheva, Antoaneta J Mol Cell Biol Article The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing mutations such as mutations in the DNA mismatch repair (MMR) are present, is unclear. Inactivation of the MMR system has long been linked to colorectal cancer; however, little is known about its role in the regulation of the colonic homeostasis. It has been shown that loss of MMR promotes the proliferation of colon epithelial cells that renders them highly susceptible to transformation. The mechanism through which MMR mediates this effect, yet, remains to be determined. Using an MMR-deficient mouse model, we show that increased methylation of Dickkopf1 impacts its expression, and consequently, the ability to negatively regulate WNT signaling. As a result, excessive levels of active β-catenin promote strong crypt progenitor-like phenotype and abnormal proliferation. Under these settings, the development and function of the goblet cells are affected. MMR-deficient mice have fewer goblet cells with enlarged mucin-loaded vesicles. We further show that MMR inactivation impacts the WNT–BMP signaling crosstalk. Oxford University Press 2019-05-08 /pmc/articles/PMC7333479/ /pubmed/31065691 http://dx.doi.org/10.1093/jmcb/mjz031 Text en © The Author(s) (2019). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Article Nørgaard, Katrine Müller, Carolin Christensen, Nadja Chiloeches, María L Madsen, Cesilie L Nielsen, Sabine S Thingholm, Tine E Belcheva, Antoaneta Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title | Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title_full | Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title_fullStr | Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title_full_unstemmed | Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title_short | Loss of mismatch repair signaling impairs the WNT–bone morphogenetic protein crosstalk and the colonic homeostasis |
title_sort | loss of mismatch repair signaling impairs the wnt–bone morphogenetic protein crosstalk and the colonic homeostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333479/ https://www.ncbi.nlm.nih.gov/pubmed/31065691 http://dx.doi.org/10.1093/jmcb/mjz031 |
work_keys_str_mv | AT nørgaardkatrine lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT mullercarolin lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT christensennadja lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT chiloechesmarial lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT madsencesiliel lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT nielsensabines lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT thingholmtinee lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis AT belchevaantoaneta lossofmismatchrepairsignalingimpairsthewntbonemorphogeneticproteincrosstalkandthecolonichomeostasis |