Cargando…

Effect of Nearly Isometric ACL Reconstruction on Graft-Tunnel Motion: A Quantitative Clinical Study

BACKGROUND: In anterior cruciate ligament (ACL) reconstruction, minimizing the graft-tunnel motion (GTM) will promote graft-to-bone healing and avoid graft loosening or tearing as well as potential bone tunnel enlargement. A nearly isometric state of the graft can be achieved by placing the tunnel p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Fang, Chen, Tianwu, Ge, Yunshen, Zhang, Peng, Chen, Shiyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333503/
https://www.ncbi.nlm.nih.gov/pubmed/32656282
http://dx.doi.org/10.1177/2325967119890382
Descripción
Sumario:BACKGROUND: In anterior cruciate ligament (ACL) reconstruction, minimizing the graft-tunnel motion (GTM) will promote graft-to-bone healing and avoid graft loosening or tearing as well as potential bone tunnel enlargement. A nearly isometric state of the graft can be achieved by placing the tunnel properly to theoretically gain better graft-to-bone healing. However, little clinical evidence is available to quantify the relation between GTM and tunnel position. PURPOSE: To find the proper zones for the femoral and tibial tunnel apertures that minimize the GTM, referred to as the “nearly isometric zone,” through use of intraoperative GTM measurement and 3-dimensional computed tomography (3D-CT). STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: A total of 100 patients were enrolled in this study. Nearly isometric ACL reconstruction was performed, and an intra-articular GTM measuring device was designed to measure and record the amplitude of GTM while the knee was flexed from 0° to 120°. Postoperatively, the patients underwent multislice CT, and the images were used to create 3D-CT models. After tibial aperture examination, 5 patients were excluded due to the divergence of tibial aperture, and therefore 95 patients remained in the study. Patients were divided into 2 groups according to whether the lateral intercondylar ridge was absent or present. The Bernard-Hertel grid coordinates (h, t) of the femoral tunnel were then quantified. RESULTS: The maximal GTM (mGTM) was a mean ± SD of 1.06 ± 0.66 mm (range, 0.0-3.0 mm). The mGTM in patients with a lateral intercondylar ridge was significantly lower than that in patients without a lateral intercondylar ridge (0.81 ± 0.39 vs 1.59 ± 0.73 mm, respectively; P < .0001). The average h and t were 0.227 ± 0.079 and 0.429 ± 0.770, respectively. Notably, in 1 patient, the mGTM was 0 mm whereas the coordinates (h, t) of the femoral tunnel were 0.250 and 0.255. The overall GTM slowly increased before 90° but increased significantly after the knee was bent 105° (P = .010). Correlation analysis showed that the t coordiinate had significant correlation with mGTM (R = 0.581; P < .001). A gradient pattern was created to show the nearly isometric blue zone (mGTM <0.5 mm), which was found to overlap with the IDEAL (isometric, direct insertion, eccentric, anatomic, low tension-flexion pattern) position. CONCLUSION: A method of measuring intraoperative GTM and quantifying femoral tunnel position on postoperative 3D-CT was successfully developed. The presence of a lateral condylar ridge can significantly reduce mGTM. A nearly isometric zone was described that was consistent with the IDEAL concept.