Cargando…
Optimization of western blotting for the detection of proteins of different molecular weight
Protein samples electroblotted onto nitrocellulose membranes and quenched with a mixture of blocking agents produced a strong signal for cystic fibrosis transmembrane-conductance regulator (CFTR), a high-molecular-weight protein, in western blotting. Optimized conditions for CFTR were then extended...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Future Science Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333534/ https://www.ncbi.nlm.nih.gov/pubmed/32283940 http://dx.doi.org/10.2144/btn-2019-0124 |
Sumario: | Protein samples electroblotted onto nitrocellulose membranes and quenched with a mixture of blocking agents produced a strong signal for cystic fibrosis transmembrane-conductance regulator (CFTR), a high-molecular-weight protein, in western blotting. Optimized conditions for CFTR were then extended to medium- and low-molecular-weight proteins (LAMP1 and Rab11a, respectively) to determine the effects of methanol concentration (0–20%) in Towbin’s transfer buffer (TTB). Methanol in TTB appears to have little to no effect on CFTR signal. However, for medium-sized (LAMP1) and small (Rab11a) proteins, a lower concentration of methanol (10%) was sufficient to produce a maximal signal. Therefore, methanol, a toxic solvent, can be removed from or reduced in TTB without compromising signal strength. Here, we show modifications that may be useful in detecting and/or improving the signal of low-abundance proteins. |
---|