Cargando…

Epidemiologically and Socio-economically Optimal Policies via Bayesian Optimization

Mass public quarantining, colloquially known as a lock-down, is a non-pharmaceutical intervention to check spread of disease. This paper presents ESOP (Epidemiologically and Socio-economically Optimal Policies), a novel application of active machine learning techniques using Bayesian optimization, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Chandak, Amit, Dey, Debojyoti, Mukhoty, Bhaskar, Kar, Purushottam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333587/
http://dx.doi.org/10.1007/s41403-020-00142-6
Descripción
Sumario:Mass public quarantining, colloquially known as a lock-down, is a non-pharmaceutical intervention to check spread of disease. This paper presents ESOP (Epidemiologically and Socio-economically Optimal Policies), a novel application of active machine learning techniques using Bayesian optimization, that interacts with an epidemiological model to arrive at lock-down schedules that optimally balance public health benefits and socio-economic downsides of reduced economic activity during lock-down periods. The utility of ESOP is demonstrated using case studies with VIPER (Virus-Individual-Policy-EnviRonment), a stochastic agent-based simulator that this paper also proposes. However, ESOP is flexible enough to interact with arbitrary epidemiological simulators in a black-box manner, and produce schedules that involve multiple phases of lock-downs.